Solution-based Transition Metal Dichalcogenides for Flexible Neuromorphic Electronics

用于柔性神经形态电子器件的基于溶液的过渡金属二硫属化物

基本信息

  • 批准号:
    EP/Y001567/1
  • 负责人:
  • 金额:
    $ 20.37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The human brain is an amazing computing machine that can process and store vast amount of information using no more energy than a 20-watt lightbulb. Modern computing systems, despite out-performing the human brain in examples like Alpha go, consume far too much energy in shuffling data between separated storage and computing units. Inspired by the human brain, where over 10^12 neurons and 10^15 synapses can process and store data concurrently with extremely low energy consumption, electronic devices that emulate biological elements, such as synapses and neurons, demonstrate great promise for neuromorphic computing. Such a neuromorphic paradigm is even more meaningful in the development of many new-concept flexible electronic systems such as wearable electronics, bionic sensors and brain-inspired chips where the energy budget is significantly constrained. Like graphene, transition metal dichalcogenide (TMDC) are a family of 2D materials whose three-atom thick unit cell is formed by a layer of transition metal atoms (Mo, W, etc.) sandwiched between two layers of chalcogen atoms (S, Se, Te). TMDCs exhibit extraordinary electronic and optical properties, making them appealing for applications spanning from nanoelectronics and nanophotonics to nanosensing. In addition, these atomic sheets can withstand mechanical strains of 10%, which makes these materials particularly suitable for flexible electronic devices, a market expected to be worth more than £10B in the next five years. Inspired by the human brain, this project will develop TMDC-based memristor devices that combine state-of-the-art performance together with scalable, industrially acceptable processing on flexible substrates. These memristors, fabricated from state-of-art fabrication technologies in nanoscales, can server as artificial synapses and neurons to faithfully mimic the biological neuronal system and perform a variety of computing tasks such as pattern and voice recognition, data analysis, process optimisation at extremely low power. The capability of integrating them onto flexible substrates further opens their application in the fast-growing world where real-time data of human and items are increasingly demanded. One key challenge here is to demonstrate the feasibility in large-scale deposition of low-dimensional TMDCs at a low temperature that is compatible with flexible substrates. Our recent work has demonstrated a breakthrough in this area through the development of a novel group of chalcogenide chemical precursors that decompose at low temperature. We will use the same chemical group to develop precursors that are capable of depositing TMDCs via low-temperature solution-processed approaches. We will also apply the high quality, large-scale and ultra-low dimensional TMDCs films into developing two-terminal memristors that can faithfully emulate the synaptic behaviour of human synapse and neurons. We will further improve memristor performance and enrich its functionality through defect engineering and composition modulation. The resulting device would have a significant impact on flexible neuromorphic electronics, and open up new and interesting applications for their deployment in skin-attachable and implantable neuromorphic electronics for wearable computing, health monitoring, and sensorimotor neural signal transmission.
人脑是一台惊人的计算机,可以使用不到20瓦灯泡的能量来处理和存储大量信息。现代计算系统,在诸如Alpha GO之类的示例中超越人类大脑的dospite在分离存储和计算单元之间消除数据时消耗了太多的能量。受人脑的启发,其中超过10^12个神经元和10^15的突触可以同时处理和存储数据与极低的能量消耗,模仿生物学元素(例如突触和神经元)的电子设备对神经形态计算表现出了很大的希望。这种神经形态范式在许多新概念的柔性电子系统(例如可穿戴电子,仿生传感器和受脑启发的芯片)的开发中更有意义,在这些电子系统中,能量预算受到了显着限制。像石墨烯一样,过渡金属二甲化合物(TMDC)是一个由2D材料的家族,其三原子厚的单元细胞由夹在两层chalcogen原子之间的过渡金属原子(MO,W等)形成(S,SE,SE,TE)。 TMDC暴露了非凡的电子和光学特性,使它们出现在纳米电子和纳米光子学到纳米传感的应用中。此外,这些原子板可以承受10%的机械应变,这使这些材料特别适合于柔性电子设备,这一市场预计在未来五年内价值超过10B。受人脑的启发,该项目将开发基于TMDC的Memristor设备,这些设备将最先进的性能与柔性基材上的可扩展性,工业可接受的处理相结合。这些由纳米级的最先进的制造技术制造的回忆录可以用作人工突触和神经元的服务器,以忠实地模仿生物神经元系统,并执行各种计算任务,例如模式和语音识别,数据分析,在极低功率下的过程优化。将它们集成到柔性底物上的能力进一步在人类和项目的实时数据中越来越多地要求在越来越多地要求的世界中开辟了其应用。这里的一个主要挑战是证明低温下低维TMDC的大规模沉积的可行性,与柔性底物兼容。我们最近的工作表明,通过在低温下分解的一组新型的硫族化学化学前体的发展,这表明了这一领域的突破。我们将使用相同的化学组来开发能够通过低温溶液处理方法沉积TMDC的前体。我们还将应用高质量,大规模和超低维的TMDC膜来开发可以安全地模仿人类突触和神经元突触行为的两末端备再次记录。我们将通过缺陷工程和组成调制来进一步提高Memristor的性能并丰富其功能。最终的设备将对柔性神经形态电子产品产生重大影响,并为其在可穿戴计算,健康监测以及感觉运动神经动物神经态性信号传播方面的皮肤和可植入的神经形态电子设备中开辟了新的有趣应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruomeng Huang其他文献

Artificial neural network enabled photovoltaic-thermoelectric generator modelling and analysis
  • DOI:
    10.1016/j.csite.2024.105053
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yuxiao Zhu;Daniel W. Newbrook;Peng Dai;Jian Liu;Jichao Li;Chunming Wang;Harold M. Chong;C.H. Kees de Groot;Ruomeng Huang
  • 通讯作者:
    Ruomeng Huang

Ruomeng Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于高光谱遥感的新疆荒漠绿洲过渡带植物光谱多样性对干旱及高温胁迫响应研究
  • 批准号:
    32360282
  • 批准年份:
    2023
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
基于光/过渡金属协同催化的不对称烷氧酰基化
  • 批准号:
    22371201
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于过渡金属催化的亚胺α-碳自由基C-O亲电偶联一锅法合成手性β-氨基醇的研究
  • 批准号:
    22301255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
层间库仑相互作用对基于单层过渡金属硫化物范德瓦尔斯异质结中声子耦合等离激元的调控机制研究
  • 批准号:
    12364009
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
基于类水滑石前体的过渡金属氮化物催化剂的结构调控与氨分解性能研究
  • 批准号:
    22378070
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Social sustainable diets: Supporting the transition to plant-based foods through close relationships
社会可持续饮食:通过密切关系支持向植物性食品的过渡
  • 批准号:
    ES/Y01040X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.37万
  • 项目类别:
    Fellowship
An integrated typology-based approach to guide the future development of European historic buildings towards a clean energy transition
一种基于类型学的综合方法,指导欧洲历史建筑未来向清洁能源转型的发展
  • 批准号:
    10110887
  • 财政年份:
    2024
  • 资助金额:
    $ 20.37万
  • 项目类别:
    EU-Funded
Modulation of spin capacitance through regulating spin moment in transition metal-doped 2D-MoS2-based anodes for application in ion batteries
通过调节过渡金属掺杂 2D-MoS2 基阳极的自旋矩来调节自旋电容,用于离子电池
  • 批准号:
    24K08319
  • 财政年份:
    2024
  • 资助金额:
    $ 20.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantification of brain state transition costs based on stochastic control theory and its application to cognitive neuroscience
基于随机控制理论的大脑状态转换成本量化及其在认知神经科学中的应用
  • 批准号:
    22KJ1172
  • 财政年份:
    2023
  • 资助金额:
    $ 20.37万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Towards understanding transition mechanism and application to heat transfer enhancement of elasto-inertia turbulence at low Reynolds number based on vortex modulation
基于涡旋调制的低雷诺数弹惯性湍流传热强化的理解和应用
  • 批准号:
    23K19093
  • 财政年份:
    2023
  • 资助金额:
    $ 20.37万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了