Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices

合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽

基本信息

项目摘要

One of the main challenges facing the development of next-generation superconducting quantum devices is high-density three-dimensional (3D) integration of large numbers of individual superconducting quantum bits (qubits). While superconducting quantum devices have reached a high level of maturity as a technology, coupling of qubits to one another to enable large-scale circuits for practical computation still remains a challenge. This project seeks to address this challenge by exploring a new approach for coupling superconducting circuits using a thin electromagnetic coupler interposed between qubit layers. The proposed work will be based on an innovative integration of quantum elements that are by themselves well-established in the PI’s and Co-PIs’ labs. Successful performance of the proposed work will expand our knowledge of quantum states in superconducting devices and will result in the development of improved quantum manufacturing approaches of broad interest for practical quantum information processing technologies. The team is committed to mentoring graduate and undergraduate students and to broadening the participation of under-represented groups in quantum engineering. In addition, the PIs will be involved in outreach efforts aiming to raise awareness about physics, materials science, and mathematics to school students. A substantial part of this effort will reach out to school students from the local Native American community. Developing new approaches to 3D integration of superconducting qubits is of crucial relevance for realizing high-depth circuits suitable for running practically relevant algorithms. Current coupling techniques for transmon qubits typically involve relatively large (millimeter-sized) coplanar resonators, while for phase qubits a variety of different capacitive or inductive coupling approaches are being investigated. No optimal solution has yet been identified for vertical expansion. Existing approaches are typically planar, due in part to limitations stemming from the technology used to create the qubit Josephson junctions (JJs) typically angle-deposition and controlled oxidation of the tunnel barrier. This results in low spatial densities for JJ circuits and coherence-limiting cross-talk. In order to address this challenge, the PIs will fabricate high-quality JJ array chips and link them vertically via waveguide arrays operating in the microwave frequencies. While each enabling component and manufacturing method has been demonstrated, their integration is a daunting task with high-risk and the co-PIs are uniquely positioned to tackle this challenge. Intellectual significance: the team’s vision of full-3D integration of JJs and cross-talk shielding is in its early stages and untested experimentally, yet presents a potentially transformative approach to solve, in a single stroke, the triple challenge of efficient superconducting circuit coupling, high-density 3D vertical integration, and cross-talk mitigation. Additionally, the project will train graduate students in state-of-the art quantum device nanofabrication, advanced materials growth, and quantum transport. The PIs will also develop courses on quantum information sciences aimed at undergraduates and quantum engineering/manufacturing aimed at graduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
发展下一代超导量子器件面临的主要挑战之一是大量单个超导量子比特(Qubit)的高密度三维(3D)集成。虽然超导量子器件作为一种技术已经达到了高度成熟的水平,但量子比特之间的耦合仍然是一个挑战,使大规模电路能够用于实际计算。这个项目试图通过探索一种新的方法来耦合超导电路,该方法使用插入在量子比特层之间的薄电磁耦合器来解决这一挑战。拟议的工作将基于对量子元素的创新集成,这些元素本身就在PI和Co-PIs的实验室中得到了很好的证实。这项工作的成功实施将扩大我们对超导器件中量子态的了解,并将导致改进的量子制造方法的发展,这些方法对实用的量子信息处理技术具有广泛的兴趣。该团队致力于指导研究生和本科生,并扩大代表不足的群体在量子工程领域的参与。此外,学校督导将参与外展工作,以提高学生对物理、材料科学和数学的认识。这项努力的很大一部分将接触到当地美洲原住民社区的在校学生。开发超导量子比特三维积分的新方法,对于实现适合于运行实际相关算法的高深度电路具有至关重要的意义。目前用于跨声子量子比特的耦合技术通常涉及相对较大(毫米大小)的共面谐振器,而对于相位量子比特,人们正在研究各种不同的电容或电感耦合方法。尚未确定垂直扩张的最佳解决方案。现有的方法通常是平面的,部分原因是来自用于创建量子比特约瑟夫森结(JJ)的技术的限制,通常是角度沉积和隧道势垒的受控氧化。这导致了JJ电路的低空间密度和限制相干的串扰。为了应对这一挑战,PI将制造高质量的JJ阵列芯片,并通过工作在微波频率的波导阵列垂直连接它们。虽然每一种使能部件和制造方法都得到了证明,但它们的整合是一项具有高风险的艰巨任务,联合绩效指标具有独特的地位,可以应对这一挑战。智力意义:该团队对JJ和串扰屏蔽的全3D集成的愿景还处于早期阶段,尚未经过实验测试,但提出了一种潜在的变革性方法,可以一举解决高效超导电路耦合、高密度3D垂直集成和串扰缓解的三重挑战。此外,该项目还将在最先进的量子设备纳米制造、先进材料生长和量子传输方面培训研究生。PIS还将开发针对本科生的量子信息科学课程和针对研究生的量子工程/制造课程。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Palmstrom其他文献

Magnetic field dependence of quantized conductance plateau in InAs quantum wire
InAs 量子线中量子化电导平台的磁场依赖性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Matsuo;Hiroshi Kamata;Shoji Baba;Russell Deacon;Javad Shabani;Christopher Palmstrom;and Seigo Tarucha
  • 通讯作者:
    and Seigo Tarucha
Atomic structures of platinum nanoparticles on a TiO2(110) surface
TiO2(110) 表面铂纳米粒子的原子结构
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松尾貞茂;Joon Sue Lee;Chien-Yuan Chang;佐藤洋介;上田健人;Christopher Palmstrom;樽茶清悟;U. Yujiro I. Ryo K. Kazuaki S. Naoya I. Yuich
  • 通讯作者:
    U. Yujiro I. Ryo K. Kazuaki S. Naoya I. Yuich
Andreev Reflection at a Junction of Spin-resolved Quantum Hall State and Superconductor
自旋分辨量子霍尔态与超导体交界处的安德烈夫反射
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sadashige Matsuo;Kento Ueda;Shoji Baba;Hiroshi Kamata;Javad Shabani;Christopher Palmstrom;and Seigo Tarucha
  • 通讯作者:
    and Seigo Tarucha
Al-InAs量子井戸から作製した超伝導接合の輸送特性.2
Al-InAs 量子阱超导结的传输特性2
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松尾貞茂;館野瑞樹;馬場翔二;上田健人;佐藤洋介;鎌田大;Joon Sue Lee;Borzoyeh Shojaei;Christopher Palmstrom;樽茶清悟
  • 通讯作者:
    樽茶清悟
InAs量子井戸から形成した量子細線の伝導特性と電界制御
InAs量子阱量子线的导电特性和电场控制
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松尾貞茂;鎌田大;馬場翔二;R. S. Deacon;Javad Shabani;Christopher Palmstrom;樽茶清悟
  • 通讯作者:
    樽茶清悟

Christopher Palmstrom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Palmstrom', 18)}}的其他基金

Buried Single Crystal Semi-Metal/Semiconductor Nanocomposites for 3D Electronic Materials
用于 3D 电子材料的埋入式单晶半金属/半导体纳米复合材料
  • 批准号:
    1507875
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Correlation of Atomic Level Growth, Characterization and Electronic Properties of Epitaxial Ferromagnetic Alloys on Compound Semiconductors
化合物半导体上外延铁磁合金的原子级生长、表征和电子性能的相关性
  • 批准号:
    0913561
  • 财政年份:
    2008
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Correlation of Atomic Level Growth, Characterization and Electronic Properties of Epitaxial Ferromagnetic Alloys on Compound Semiconductors
化合物半导体上外延铁磁合金的原子级生长、表征和电子性能的相关性
  • 批准号:
    0606245
  • 财政年份:
    2006
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Development of In-Situ Magnetic Characterization for Magnetic/Semiconductor Heterostructures Research, Student Training and Education
磁性/半导体异质结构研究、学生培训和教育的原位磁性表征开发
  • 批准号:
    0076493
  • 财政年份:
    2000
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了