Compact Terahertz Clock
紧凑型太赫兹时钟
基本信息
- 批准号:EP/Y004361/1
- 负责人:
- 金额:$ 48.65万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In recent decades, atomic clocks have developed from being solely research instruments to indispensable and infrastructure-critical devices. Atomic clocks are now widely used in Global Navigation Satellite Systems (GNSS), data centres, power and mobile networks, financial markets for transaction time stamping, and research and development. Presently, many applications requiring high-precision timing rely on GNSS signals. However, this makes crucial infrastructure vulnerable to GNSS tampering and failure, with significant socio-economic consequences. Therefore, local high-performance atomic clocks are needed to safeguard against this. Other applications need to function in a GNSS-denied environment such as the navigation of submarines or electronic warfare and other security situations. Clock performance beyond GNSS capability is also required for state-of-the-art scientific research and advanced timekeeping.Current portable clocks currently have limited stability and accuracy or are too large and sensitive for applications on mobile platforms. While there has been immense progress in the miniaturisation of the laser systems and spectroscopy units for high-precision optical atomic clocks there are still two main challenges to overcome: The reference laser that requires a high-finesse optical cavity and the optical-frequency comb (OFC) that is required to convert the optical reference signal to a usable electronic signal.Here we propose to employ Raman transitions to create a highly stable and accurate atomic clock. In contrast to optical atomic clocks, the atomic reference stability is not transferred to the frequency of a single laser but is encoded in the frequency difference between two Raman lasers. This significantly relaxes requirements on the OFC and the optical cavity for the clock lasers.For the realisation of a THz-clock, we propose using calcium ions trapped in an RF ion trap and the Raman transition between the D3/2-level and the D5/2-level. The frequency splitting between these two states is 1.819 THz and the expected fractional frequency accuracy of the clock is better than 10-14 (systematic accuracy better than 1e-15) with a 20-litre form factor, significantly smaller than current optical clock systems.Due to its high accuracy in conjunction with small SWAP as well as robustness, this novel clock is exceptionally fit for applications on mobile platforms and in locations with low environmental control. Such portability, makes it particularly well suited for applications in the defence and security sector and as GNNS holdover clocks for telecom and utility networks as well as data centres and financial markets with holdover times of several months. Additionally, it enables novel schemes for frequency dissemination and synchronisation across large-scale telecom networks. Within this project, we will set up the THz-clock with equipment provided by CPI, characterise its performance and test the system in some application-relevant scenarios. CPI will perform environmental testing in their test facility, Leonardo will test the clock's performance on a mobile platform, and BT will investigate next-generation schemes for frequency dissemination and synchronisation across large optical fibre networks.
近几十年来,原子钟已经从纯粹的研究仪器发展成为不可或缺的基础设施关键设备。原子钟现在广泛用于全球导航卫星系统(GNSS)、数据中心、电力和移动的网络、金融市场的交易时间戳以及研究和开发。目前,许多需要高精度定时的应用依赖于GNSS信号。然而,这使得关键的基础设施容易受到全球导航卫星系统干扰和故障的影响,造成严重的社会经济后果。因此,需要本地高性能原子钟来防止这种情况。其他应用程序需要在拒绝全球导航卫星系统的环境中运行,例如潜艇导航或电子战和其他安全情况。目前的便携式时钟稳定性和准确性有限,或者对于移动的平台上的应用来说过于庞大和敏感。虽然在高精度光学原子钟的激光系统和光谱单元的升级方面取得了巨大进展,但仍有两个主要挑战需要克服:参考激光器需要高精细度光腔和光频梳(OFC)在这里,我们提出采用拉曼跃迁来创建一个高度稳定的精确的原子钟与光学原子钟相比,原子参考稳定性不转移到单个激光器的频率,而是编码在两个拉曼激光器之间的频率差中。为了实现太赫兹时钟,我们提出了利用射频离子阱中捕获的钙离子和D3/2能级与D5/2能级之间的拉曼跃迁来实现太赫兹时钟。这两个状态之间的频率分裂为1.819 THz,并且时钟的预期分数频率精度优于10-14(系统精度优于1 e-15),外形尺寸为20升,明显小于当前的光学时钟系统。由于其高精度与小SWAP以及鲁棒性,这种新颖的时钟特别适合于在移动的平台上和在环境控制低的位置中的应用。这种便携性使其特别适合国防和安全部门的应用,并作为电信和公用事业网络以及数据中心和金融市场的GNNS保持时钟,保持时间长达数月。此外,它还可以实现跨大规模电信网络的频率传播和同步的新方案。在这个项目中,我们将建立太赫兹时钟与CPI提供的设备,测试其性能和测试系统在一些应用相关的场景。CPI将在其测试设施中进行环境测试,列奥纳多将在移动的平台上测试时钟的性能,英国电信将研究下一代大型光纤网络频率传播和同步方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthias Keller其他文献
Zurück zum Pre Injury Level – der RTA Algorithmus für die obere Extremität
Zurück zum 受伤前水平 – der RTA Algorithmus for die obere Extremität
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Matthias Keller;E. Kurz - 通讯作者:
E. Kurz
Lower extremity movement quality in professional team sport athletes: Inter-rater agreement and relationships with quantitative results from the corresponding pattern
职业团队运动运动员的下肢运动质量:评估者间的一致性以及与相应模式的定量结果的关系
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Matthias Keller;D. Niederer;René Schwesig;Eduard Kurz - 通讯作者:
Eduard Kurz
Zurück zum Wurfsport nach Verletzung und Überlastung an der oberen Extremität
Zurück zum Wurfsport nach Verletzung und Überlastung an der oberen Extremität
- DOI:
10.1007/s00132-023-04375-5 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Matthias Keller;A. Lenich;T. Saier;E. Kurz - 通讯作者:
E. Kurz
A topology-aware adaptive deployment framework for elastic applications
用于弹性应用程序的拓扑感知自适应部署框架
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Matthias Keller;Manuel Peuster;Christoph Robbert;H. Karl - 通讯作者:
H. Karl
Sphingosine kinase functionally links elevated transmural pressure and increased reactive oxygen species formation in resistance arteries
鞘氨醇激酶在功能上将升高的跨壁压与阻力动脉中活性氧形成的增加联系起来
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Matthias Keller;D. Lidington;Lukas Vogel;B. Peter;Hae‐Young Sohn;Patrick J. Pagano;Stuart Pitson;Sarah Spiegel;Ulrich Pohl;S. Bolz - 通讯作者:
S. Bolz
Matthias Keller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthias Keller', 18)}}的其他基金
A network of clocks for measuring the stability of fundamental constants
用于测量基本常数稳定性的时钟网络
- 批准号:
ST/T006048/1 - 财政年份:2021
- 资助金额:
$ 48.65万 - 项目类别:
Research Grant
IOTA: Compact Ion Clock for Precision Timing Applications
IOTA:用于精密计时应用的紧凑型离子时钟
- 批准号:
EP/R043566/1 - 财政年份:2018
- 资助金额:
$ 48.65万 - 项目类别:
Research Grant
Low temperature Ion - Radical Collisions
低温离子-自由基碰撞
- 批准号:
EP/N004930/1 - 财政年份:2015
- 资助金额:
$ 48.65万 - 项目类别:
Research Grant
Quantum Networking with Fibre-Coupled Ions
光纤耦合离子的量子网络
- 批准号:
EP/J003670/1 - 财政年份:2012
- 资助金额:
$ 48.65万 - 项目类别:
Research Grant
Deuterium fractionation in ultracold collisions using trapped molecular ions
使用捕获分子离子进行超冷碰撞中的氘分馏
- 批准号:
EP/I029230/1 - 财政年份:2011
- 资助金额:
$ 48.65万 - 项目类别:
Research Grant
相似国自然基金
量子限制杂质原子作为单电子量子点对Terahertz远红外发光器的应用
- 批准号:60776044
- 批准年份:2007
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Terahertz Imaging for Side-Channel Attacks
用于侧信道攻击的太赫兹成像
- 批准号:
NI230100072 - 财政年份:2024
- 资助金额:
$ 48.65万 - 项目类别:
National Intelligence and Security Discovery Research Grants
Terahertz-frequency sensors for atmospheric chemistry and space research (renewal)
用于大气化学和空间研究的太赫兹频率传感器(更新)
- 批准号:
MR/Y011775/1 - 财政年份:2024
- 资助金额:
$ 48.65万 - 项目类别:
Fellowship
Spatial light modulator by MEMS reconfigurable metamaterial for Terahertz wave
太赫兹波MEMS可重构超材料空间光调制器
- 批准号:
23K20256 - 财政年份:2024
- 资助金额:
$ 48.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Next Generation Terahertz Materials
下一代太赫兹材料
- 批准号:
DP240103404 - 财政年份:2024
- 资助金额:
$ 48.65万 - 项目类别:
Discovery Projects
Leaky Dielectric Platform for Integrated Terahertz Components
用于集成太赫兹组件的漏电介质平台
- 批准号:
DP240100162 - 财政年份:2024
- 资助金额:
$ 48.65万 - 项目类别:
Discovery Projects
6G Terahertz Communications for Future Heterogeneous Wireless Network
面向未来异构无线网络的 6G 太赫兹通信
- 批准号:
EP/Y035135/1 - 财政年份:2024
- 资助金额:
$ 48.65万 - 项目类别:
Research Grant
AuNPs and DNA Aptamer-Driven Terahertz Sensor for Highly Sensitive Detection of Small Molecules
AuNP 和 DNA 适配体驱动的太赫兹传感器,用于小分子的高灵敏度检测
- 批准号:
24K07524 - 财政年份:2024
- 资助金额:
$ 48.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Resonant tunneling diode Terahertz oscillator with superlattice heterostructure for high output power
具有超晶格异质结构的谐振隧道二极管太赫兹振荡器,可实现高输出功率
- 批准号:
24K17329 - 财政年份:2024
- 资助金额:
$ 48.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
PFI-TT: Scale up of new materials that generate terahertz-frequency light for advanced scanning applications
PFI-TT:扩大产生太赫兹频率光的新材料的规模,用于高级扫描应用
- 批准号:
2345726 - 财政年份:2024
- 资助金额:
$ 48.65万 - 项目类别:
Standard Grant
Integrated slab-mode beam engineering for handheld terahertz systems
用于手持式太赫兹系统的集成板模式光束工程
- 批准号:
DE240100625 - 财政年份:2024
- 资助金额:
$ 48.65万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




