Development of a FULly InTellIgent Maintenance FrAmework for PrognosTic Health ManagemEnt of Floating Offshore Wind Turbines (ULTIMATE)

开发用于浮动式海上风力发电机预测健康管理的完全智能维护框架(终极版)

基本信息

  • 批准号:
    EP/Y014235/1
  • 负责人:
  • 金额:
    $ 25.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

This project aims to develop a fully intelligent solutions to the challenges of prognostic health management of floating offshore wind turbines (FOWT). The research will develop a Physics Informed Deep Neural Network with Uncertainty Quantification (PIDNN-UQ) for real-time diagnosis and prognosis by combining smart and high precision dataset to address big data problem. Numerical simulations of FOWT in coupled multi-physical fields will be conducted to investigate fatigue behaviours and mechanisms. Smart (data-centric) databases of fatigue mechanisms for accurate modelling and analysis of FOWT will be devloped to facilitate realt-time diagnosis and prognosis. The study will design and implement multi-tasking PIDNN-UQ models with physics-informed capability to improved model's knowledge and uncertainty quantification. This will enable the model to diagnose, quantify and predict the remaining useful lifetime of FOWTs. Experimental and field data from Hywind 5 x 6MW FOWTs (Floating wind farm) and open source data from fixed bottom wind turbines (RAVE) would be used to validate and examine the performance of the ULTIMATE. Outcomes of the research will contribute to advances in predictive maintenance, understanding of operation and performance of FOWT in real time. This project will also contribute to knowledge in machine learning application to offshore engineering and renewable energy systems. This will enhance curriculum development in O&M, structural integrity, data science and applied mathematics. engineering, mathematical theories of intelligent operation and maintenance of mechanical systems. The project benefits the industry by developing intelligent maintenance methodologies based on PHM methods that delivers optimal FOWT operation with minimal human interface and improved safety and reliability.
该项目旨在开发一种完全智能的解决方案,以应对浮动海上风力涡轮机(FOWT)的预测健康管理挑战。该研究将开发一种具有不确定性量化的物理信息深度神经网络(PIDNN-UQ),通过结合智能和高精度数据集来解决大数据问题,从而实现实时诊断和预后。将进行耦合多物理场的FOWT的数值模拟,以研究疲劳行为和机制。将开发用于精确建模和分析FOWT的疲劳机制的智能(以数据为中心)数据库,以促进实时诊断和预后。本研究将设计并实作多任务PIDNN-UQ模型,并将其应用于多任务PIDNN-UQ模型中,以增进模型的知识与不确定性量化。这将使该模型能够诊断、量化和预测FOWT的剩余使用寿命。来自Hywind 5 x 6 MW FOWT(浮动风电场)的实验和现场数据以及来自固定底部风力涡轮机(RAVE)的开源数据将用于验证和检查ULTIMATE的性能。研究结果将有助于预测性维护的进步,理解操作和性能的FOWT在真实的时间。该项目还将有助于将机器学习应用于海上工程和可再生能源系统。这将加强O&M,结构完整性,数据科学和应用数学的课程开发。工程、数学理论的智能化操作与维护机械系统。该项目通过开发基于PHM方法的智能维护方法使行业受益,该方法以最少的人机界面提供最佳FOWT操作,并提高安全性和可靠性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Musa Bashir其他文献

Dynamic analysis of an improved shared moorings for floating offshore wind farm
  • DOI:
    10.1016/j.renene.2024.120963
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lu Xie;Chun Li;Minnan Yue;Hongsheng He;Wenzhe Jia;Qingsong Liu;Zifei Xu;Li Fan;Musa Bashir;Yangtian Yan
  • 通讯作者:
    Yangtian Yan
Comparison of the fully coupled dynamic responses of spar-type integrated wind-current floating energy systems with various tidal turbine layouts
具有不同潮流涡轮布局的 spar型集成风水浮动能源系统的全耦合动态响应比较
  • DOI:
    10.1016/j.oceaneng.2025.120866
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Wei Liu;Jieyi Ding;Jianbin Fu;Zhen Zhang;Jie Yu;Haigang Hu;Musa Bashir;Shuai Li;Yang Yang
  • 通讯作者:
    Yang Yang
Investigation of dynamic stall models on the aeroelastic responses of a floating offshore wind turbine
  • DOI:
    10.1016/j.renene.2024.121778
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zhen Zhang;Yang Yang;Zhihao Qin;Musa Bashir;Yuming Cao;Jie Yu;Qianni Liu;Chun Li;Shuai Li
  • 通讯作者:
    Shuai Li
Cytological Changes in Buccal Mucosa among Glue Abusers in Shendi, Sudan
苏丹申迪滥用胶者口腔粘膜的细胞学变化
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mosab Nouraldein;Mohammed Hamad;Mohammed Abdelgader Elsheikh¹;Amna Sanhoury Eesa¹;Abdelgader Awad Alamin1;Tibyan Abd;Almajed Altaher;G. M. Mahjaf;Mazin Babekir;Musa Bashir
  • 通讯作者:
    Musa Bashir
Wave-induced motion prediction of a deepwater floating offshore wind turbine platform based on Bi-LSTM
  • DOI:
    10.1016/j.oceaneng.2024.119836
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jiaqing Yin;Jieyi Ding;Yang Yang;Jie Yu;Lu Ma;Wenhao Xie;Debang Nie;Musa Bashir;Qianni Liu;Chun Li;Shuai Li
  • 通讯作者:
    Shuai Li

Musa Bashir的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Development of a fully humanised model for understanding platelet function
开发了解血小板功能的完全人源化模型
  • 批准号:
    NC/Y000870/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Research Grant
AerialHitches: Forming and Controlling Hitches for Fully Autonomous Transportation Using Aerial Robots with Cables
空中挂钩:使用带有电缆的空中机器人形成和控制全自动运输的挂钩
  • 批准号:
    2322840
  • 财政年份:
    2024
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Fully general-relativistic magneto-hydrodynamic simulations beyond Relativity with GPUs
使用 GPU 进行超越相对论的完全广义相对论磁流体动力学模拟
  • 批准号:
    ST/Z000424/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Research Grant
Extremely efficient fully three-dimensional hydrodynamic simulations of supernova remnants for the new age of microcalorimetric X-ray astronomy
针对微量热 X 射线天文学新时代的超新星遗迹进行极其高效的全三维流体动力学模拟
  • 批准号:
    24K07092
  • 财政年份:
    2024
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploiting fully coupled fluid-structure interaction: optimal wing heterogeneity and efficient flow state estimation in flapping flight
利用完全耦合的流固相互作用:扑翼飞行中的最佳机翼异质性和有效的流动状态估计
  • 批准号:
    2320875
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
EAGER: Ultra Broadband Fully Integrated GaN Front End Integrated Chip
EAGER:超宽带全集成GaN前端集成芯片
  • 批准号:
    2332167
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Molecular Mechanisms Underlying Pluripotency in Fully Differentiated Plant Cells
完全分化植物细胞多能性的分子机制
  • 批准号:
    23K14217
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Calon-Cardio's Fully Implantable ventricular assist device
Calon-Cardio 的完全植入式心室辅助装置
  • 批准号:
    10037229
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Collaborative R&D
Sustainable Chemical Innovations Enabling Net Carbon Emissions (SCIENCE): Fully funded PhD studentship, School of Chemistry, University of Nottingham
实现净碳排放的可持续化学创新(科学):诺丁汉大学化学学院全额资助博士生奖学金
  • 批准号:
    2884925
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了