KEEN - Knowledge-driven Explainable Misinformation Detection for Trustworthy Computational Social Systems
KEEN - 知识驱动的可解释错误信息检测,用于可信赖的计算社会系统
基本信息
- 批准号:EP/Y015894/1
- 负责人:
- 金额:$ 25.55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the prosperity of social media platforms like Facebook and Twitter, misinformation can be disseminated widely among the general public, causing a severe threat to the trustworthiness of computational social systems. To address this critical issue, various misinformation detection models have been proposed recently. However, the existing methods either use black-box deep learning (DL) models which cannot provide explainability of detection results, or leverage shallow experience-based explainable models which leads to low detection accuracy.This project aims to create a novel knowledge-driven approach to build both accurate and explainable misinformation detection models for trustworthy computational social systems. To this end, I will first establish a novel knowledge-driven integration mechanism to seamlessly integrate social psychological theories with DL models based on multi-modal social media data. Secondly, a novel explanation scheme will be developed to effectively convey social psychological theories into reliable model explainability through knowledge extraction. Thirdly, an accurate and explainable DL framework will be constructed base on hybrid DL models and hierarchical attention-based explanation. Finally, a prototype system will be developed to implement the proposed solutions and evaluate their performance. The scientific breakthroughs to be made in this project will contribute to provide the effective design of accurate and explainable misinformation detection models. The originality of this project lies in its interdisciplinary research on how to establish an innovative explainable DL approach for trustworthy computational social systems. A series of well-arranged research, training, knowledge transfer, and open science activities are planned to accomplish the ambitious aim of this project, facilitate knowledge transfer and dissemination, and enhance my creative and innovative potential and careerprospects with new skills and competences.
随着Facebook和Twitter等社交媒体平台的繁荣,错误信息可以在公众中广泛传播,对计算社交系统的可信度造成严重威胁。为了解决这一关键问题,最近提出了各种错误信息检测模型。然而,现有的方法要么使用黑盒深度学习(DL)模型,无法提供检测结果的可解释性,要么利用基于经验的浅层可解释模型,导致检测准确率低。本项目旨在创建一种新的知识驱动方法,为可信的计算社会系统构建准确且可解释的错误信息检测模型。为此,我将首先建立一个新的知识驱动的整合机制,无缝整合社会心理学理论与基于多模态社会媒体数据的深度学习模型。其次,一个新的解释方案将开发有效地传达社会心理学理论到可靠的模型解释能力,通过知识提取。第三,基于混合深度学习模型和基于注意力的层次化解释,构建一个精确的、可解释的深度学习框架。最后,将开发一个原型系统来实现所提出的解决方案,并评估其性能。该项目取得的科学突破将有助于提供准确和可解释的错误信息检测模型的有效设计。该项目的独创性在于其跨学科研究如何建立一个创新的可解释的DL方法,值得信赖的计算社会系统。一系列精心安排的研究,培训,知识转移和开放科学活动计划完成这个项目的宏伟目标,促进知识转移和传播,并提高我的创造力和创新潜力和职业前景与新的技能和能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geyong Min其他文献
A Light-Weight Statistical Latency Measurement Platform at Scale
轻量级大规模统计延迟测量平台
- DOI:
10.1109/tii.2021.3098796 - 发表时间:
2021-07 - 期刊:
- 影响因子:12.3
- 作者:
Xu Zhang;Geyong Min;Qilin Fan;Hao Yin;Dapeng Wu;Zhan Ma - 通讯作者:
Zhan Ma
On the Study of Sustainability and Outage of SWIPT-Enabled Wireless Communications
基于SWIPT的无线通信的可持续性和中断研究
- DOI:
10.1109/jstsp.2021.3092136 - 发表时间:
2021-06 - 期刊:
- 影响因子:7.5
- 作者:
Yang Luo;Chunbo Luo;Geyong Min;Gerard Parr;Sally McClean - 通讯作者:
Sally McClean
Performance analysis of an integrated scheduling scheme in the presence of bursty MMPP traffic
存在突发 MMPP 流量时集成调度方案的性能分析
- DOI:
10.1016/j.jss.2010.08.027 - 发表时间:
2011 - 期刊:
- 影响因子:3.5
- 作者:
Lei Liu;Xiaolong Jin;Geyong Min - 通讯作者:
Geyong Min
Cooperative Edge Caching Based on Temporal Convolutional Networks
基于时间卷积网络的协作边缘缓存
- DOI:
10.1109/tpds.2021.3135257 - 发表时间:
2021 - 期刊:
- 影响因子:5.3
- 作者:
Xu Zhang;Zhengnan Qi;Geyong Min;Wang Miao;Qilin Fan;Zhan Ma - 通讯作者:
Zhan Ma
SDVD: Self-supervised dual-view modeling of user and cascade dynamics for information diffusion prediction
- DOI:
10.1016/j.knosys.2025.114005 - 发表时间:
2025-09-27 - 期刊:
- 影响因子:7.600
- 作者:
Haoyu Xiong;Jiaxing Shang;Fei Hao;Dajiang Liu;Geyong Min - 通讯作者:
Geyong Min
Geyong Min的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geyong Min', 18)}}的其他基金
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
- 批准号:
EP/Y015878/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Fellowship
RITA: Reliable and Efficient Task Management in Edge Computing for AIoT Systems
RITA:AIoT 系统边缘计算中可靠、高效的任务管理
- 批准号:
EP/Y015886/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Fellowship
ASCENT: Autonomous Vehicular Edge Computing and Networking for Intelligent Transportation
ASCENT:智能交通的自主车辆边缘计算和网络
- 批准号:
EP/X038866/1 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
Proposal for Support of the Keynote Speakers for the 10th IEEE International Conference on Computer and Information Technology (CIT-2010)
支持第十届 IEEE 计算机与信息技术国际会议 (CIT-2010) 主讲嘉宾的提案
- 批准号:
EP/I011676/1 - 财政年份:2010
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
相似海外基金
Real-time inversion using self-explainable deep learning driven by expert knowledge
使用由专家知识驱动的可自我解释的深度学习进行实时反演
- 批准号:
EP/Z000653/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Research Grant
A PROGRESS-Driven Approach to Cognitive Outcomes after Traumatic Brain Injury: Advancing Equity, Diversity, and Inclusion through Knowledge Synthesis and Mobilization
创伤性脑损伤后认知结果的进步驱动方法:通过知识合成和动员促进公平、多样性和包容性
- 批准号:
492338 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Operating Grants
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
- 批准号:
2324742 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Continuing Grant
CAREER: Timeliness as a Controllable Dimension via Knowledge-driven System Management
职业:通过知识驱动的系统管理将及时性作为可控维度
- 批准号:
2238476 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Continuing Grant
Learning Precision Medicine for Rare Diseases Empowered by Knowledge-driven Data Mining
通过知识驱动的数据挖掘学习罕见疾病的精准医学
- 批准号:
10732934 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Research and development of vector image retrieval by cooperating knowledge-driven and data-driven models
知识驱动与数据驱动模型协同的矢量图像检索研究与开发
- 批准号:
23K11121 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Excellence in Research: Developing a Knowledge Graph Driven Integrative Framework for Explainable Protein Function Prediction via Generative Deep Learning
卓越研究:通过生成深度学习开发知识图驱动的集成框架,用于可解释的蛋白质功能预测
- 批准号:
2302637 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Standard Grant
A Photochemical CO2 Reduction Over Supported Single Atom Catalyst: A Knowledge Driven Approach From Molecular to Heterogeneous Catalysis
负载单原子催化剂上的光化学二氧化碳还原:从分子催化到多相催化的知识驱动方法
- 批准号:
EP/X024822/1 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Fellowship
Knowledge Graph-driven Software Vulnerability Risk Discovery and Assessment
知识图驱动的软件漏洞风险发现与评估
- 批准号:
DP230100716 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Discovery Projects
INTERACT's Healthy City Solutions Summit: Tapping into community knowledge for equity-driven research and planning
INTERACT 的健康城市解决方案峰会:利用社区知识进行公平驱动的研究和规划
- 批准号:
480760 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Miscellaneous Programs