Megabar Neutron Diffraction for Hydrogen, Ices and Superconductor Research MENHIR

用于氢、冰和超导体研究的兆巴中子衍射 MENHIR

基本信息

  • 批准号:
    EP/Y020987/1
  • 负责人:
  • 金额:
    $ 95.46万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The pressure of around one million atmospheres is an important milestone for systems composed of molecules. Pressures around this value are required to break the strong covalent bonds which hold molecules together and hence transform molecular systems into non-molecular systems. This change from molecular to non-molecular leads to profound changes in properties. Hydrogen has been reported to become a metal and this metallic form may be the cause of Jupiter's magnetic field. The hydrogen atoms in water and ice detach from the oxygen atoms and become mobile so that they conduct electricity in a way similar to the way that lithium ions in the batteries of laptops and phones conduct. Hydrogen sulphide forms a metallic compound which superconducts at a temperature of only -70 C. A study of these and similar phenomena yields information that is of both fundamental and technological importance. For example, the behaviour of hydrogen atoms provides stringent tests for our understanding of quantum behaviour, the way hydrogen-bonded solids like ice behave provides insight into the way biochemical processes work, and novel superconductors offer new routes to a potential room temperature superconductor which would transform power distribution medical imaging and could make a 'Back To The Future II' hoverboard a reality. However, our understanding of these and other important hydrogen-rich systems at million atmosphere pressures is limited by the fact that the most fundamental information -- the position of the hydrogen atoms in the crystal structures -- is currently not known. The reason for this lack of information is that neutron diffraction which is the only technique able to measure hydrogen atom positions directly was until recently restricted to pressures below 300,000 atmospheres and so information on the positions of the hydrogen atoms had to be obtained indirectly or from computational modelling. For the past seven years we have been developing the use of suitable technology for neutron diffraction studies using the SNAP instrument and the Spallation Neutron Source at Oak Ridge National Laboratory in the United States. We have now reached the stage where structures can be successfully determined at pressures in excess of one million atmospheres using both powder and single crystal diffraction techniques.This project aims to use a so called diamond anvil cell where the sample is compressed between two large gem quality diamonds to study the structures of hydrogen, ice and related ices (ammonia hemihydrate and hydrogen chloride), and very high Tc superconductors up to million atmosphere pressures.
大约一百万个大气压的压力是由分子组成的系统的一个重要里程碑。这个值附近的压力需要打破将分子保持在一起的强共价键,从而将分子系统转化为非分子系统。这种从分子到非分子的变化导致了性质的深刻变化。据报道,氢变成了金属,这种金属形式可能是木星磁场的原因。水和冰中的氢原子从氧原子中分离出来,变得移动的,因此它们的导电方式与笔记本电脑和手机电池中的锂离子的导电方式相似。硫化氢形成一种金属化合物,它在零下70摄氏度的温度下就能超导。对这些现象和类似现象的研究产生了具有基础和技术重要性的信息。例如,氢原子的行为为我们理解量子行为提供了严格的测试,像冰这样的氢键固体的行为方式提供了对生化过程工作方式的洞察,新型超导体为潜在的室温超导体提供了新的途径,这将改变配电医学成像,并可能使“回到未来II”悬浮板成为现实。然而,我们对这些和其他重要的富氢系统在百万大气压下的理解是有限的,因为最基本的信息-氢原子在晶体结构中的位置-目前还不知道。缺乏信息的原因是中子衍射是唯一能够直接测量氢原子位置的技术,直到最近才被限制在30万个大气压以下的压力下,因此关于氢原子位置的信息必须间接或从计算模型中获得。在过去的七年里,我们一直在开发使用合适的技术,中子衍射研究使用SNAP仪器和Sputron中子源在橡树岭国家实验室在美国。我们现在已经达到了这样一个阶段,即利用粉末和单晶衍射技术可以在超过一百万个大气压的压力下成功地确定结构。本项目旨在使用所谓的金刚石压砧,将样品压缩在两个大宝石级金刚石之间,以研究氢、冰和相关冰的结构(半水合氨和氯化氢),以及高达百万大气压的极高Tc超导体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Loveday其他文献

John Loveday的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于新型co-Neutron-Encoding技术对蛋白质精氨酸二甲基化修饰进行质谱精准鉴定研究
  • 批准号:
    21675006
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Light Elements in the Earth's core: Constraints on the amount of hydrogen in iron alloys by high-pressure and high-temperature neutron diffraction
地核中的轻元素:高压高温中子衍射对铁合金中氢含量的限制
  • 批准号:
    22KJ1065
  • 财政年份:
    2023
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of an automatic integration range determination method for pulsed neutron diffraction data collected from protein single crystals
开发从蛋白质单晶收集的脉冲中子衍射数据的自动积分范围确定方法
  • 批准号:
    22K06157
  • 财政年份:
    2022
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Correction Of Microstructural Aberrations In Neutron Diffraction Strain Measurements In Power Plant Structures.
发电厂结构中子衍射应变测量中微观结构像差的校正。
  • 批准号:
    2606920
  • 财政年份:
    2021
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Studentship
Correction of microstructural aberrations in Neutron Diffraction strain measurements in power plant structures
发电厂结构中子衍射应变测量中微观结构像差的校正
  • 批准号:
    2621984
  • 财政年份:
    2021
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Studentship
Development of two-dimensional strain mapping technique around a fatigue crack using the pulsed neutron Bragg-edge transmission imaging and neutron diffraction
使用脉冲中子布拉格边透射成像和中子衍射开发疲劳裂纹周围的二维应变映射技术
  • 批准号:
    20K20106
  • 财政年份:
    2020
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Direct observation of symmetrization of hydrogen bond in ice using high-pressure neutron diffraction technique
利用高压中子衍射技术直接观察冰中氢键的对称性
  • 批准号:
    20K05425
  • 财政年份:
    2020
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neutron diffraction magnetic structure analysis near the quantum criticality of ferromagnetic metals
铁磁金属量子临界点附近的中子衍射磁结构分析
  • 批准号:
    19K03756
  • 财政年份:
    2019
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a bespoke sample environment for operando neutron diffraction studies of chemical looping materials and processes.
开发用于化学循环材料和工艺的操作中子衍射研究的定制样品环境。
  • 批准号:
    2281207
  • 财政年份:
    2019
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Studentship
Development of peak deconvolution method for pulsed neutron diffraction data of protein long lattice crystals
蛋白质长晶格晶体脉冲中子衍射数据峰反卷积方法的发展
  • 批准号:
    19K16083
  • 财政年份:
    2019
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
HFIR-SNS Advanced Neutron Diffraction and Scattering 2019 Workshop (HANDS2019)
2019年HFIR-SNS高级中子衍射与散射研讨会(HANDS2019)
  • 批准号:
    1915748
  • 财政年份:
    2019
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了