Megabar Neutron Diffraction for Hydrogen, Ices and Superconductor Research MENHIR

用于氢、冰和超导体研究的兆巴中子衍射 MENHIR

基本信息

  • 批准号:
    EP/Y020987/1
  • 负责人:
  • 金额:
    $ 95.46万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The pressure of around one million atmospheres is an important milestone for systems composed of molecules. Pressures around this value are required to break the strong covalent bonds which hold molecules together and hence transform molecular systems into non-molecular systems. This change from molecular to non-molecular leads to profound changes in properties. Hydrogen has been reported to become a metal and this metallic form may be the cause of Jupiter's magnetic field. The hydrogen atoms in water and ice detach from the oxygen atoms and become mobile so that they conduct electricity in a way similar to the way that lithium ions in the batteries of laptops and phones conduct. Hydrogen sulphide forms a metallic compound which superconducts at a temperature of only -70 C. A study of these and similar phenomena yields information that is of both fundamental and technological importance. For example, the behaviour of hydrogen atoms provides stringent tests for our understanding of quantum behaviour, the way hydrogen-bonded solids like ice behave provides insight into the way biochemical processes work, and novel superconductors offer new routes to a potential room temperature superconductor which would transform power distribution medical imaging and could make a 'Back To The Future II' hoverboard a reality. However, our understanding of these and other important hydrogen-rich systems at million atmosphere pressures is limited by the fact that the most fundamental information -- the position of the hydrogen atoms in the crystal structures -- is currently not known. The reason for this lack of information is that neutron diffraction which is the only technique able to measure hydrogen atom positions directly was until recently restricted to pressures below 300,000 atmospheres and so information on the positions of the hydrogen atoms had to be obtained indirectly or from computational modelling. For the past seven years we have been developing the use of suitable technology for neutron diffraction studies using the SNAP instrument and the Spallation Neutron Source at Oak Ridge National Laboratory in the United States. We have now reached the stage where structures can be successfully determined at pressures in excess of one million atmospheres using both powder and single crystal diffraction techniques.This project aims to use a so called diamond anvil cell where the sample is compressed between two large gem quality diamonds to study the structures of hydrogen, ice and related ices (ammonia hemihydrate and hydrogen chloride), and very high Tc superconductors up to million atmosphere pressures.
大约一百万个大气压的压力对于由分子组成的系统来说是一个重要的里程碑。需要大约该值的压力来破坏将分子结合在一起的强共价键,从而将分子系统转变为非分子系统。这种从分子到非分子的变化导致了性质的深刻变化。据报道,氢会变成金属,这种金属形式可能是木星磁场的原因。水和冰中的氢原子与氧原子分离并变得可移动,因此它们的导电方式类似于笔记本电脑和手机电池中的锂离子的导电方式。硫化氢形成一种金属化合物,仅在 -70°C 的温度下即可超导。对这些现象和类似现象的研究产生了具有基础和技术重要性的信息。例如,氢原子的行为为我们理解量子行为提供了严格的测试,氢键固体(如冰)的行为方式提供了对生化过程工作方式的深入了解,新型超导体为潜在的室温超导体提供了新途径,这将改变配电医学成像,并使“回到未来 II”悬浮滑板成为现实。然而,我们对百万大气压下的这些和其他重要富氢系统的理解受到以下事实的限制:最基本的信息——氢原子在晶体结构中的位置——目前尚不清楚。缺乏信息的原因是,中子衍射是唯一能够直接测量氢原子位置的技术,直到最近还仅限于低于 300,000 个大气压的压力,因此必须间接或通过计算模型获得有关氢原子位置的信息。在过去的七年里,我们一直在使用美国橡树岭国家实验室的 SNAP 仪器和散裂中子源来开发适合中子衍射研究的技术。我们现在已经达到了可以使用粉末和单晶衍射技术在超过一百万个大气压的压力下成功确定结构的阶段。该项目旨在使用所谓的金刚石砧室,其中样品被压缩在两颗大型宝石级钻石之间,以研究氢、冰和相关冰(半水合氨和氯化氢)以及高达百万个大气压的极高 Tc 超导体的结构 压力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Loveday其他文献

John Loveday的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于新型co-Neutron-Encoding技术对蛋白质精氨酸二甲基化修饰进行质谱精准鉴定研究
  • 批准号:
    21675006
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Light Elements in the Earth's core: Constraints on the amount of hydrogen in iron alloys by high-pressure and high-temperature neutron diffraction
地核中的轻元素:高压高温中子衍射对铁合金中氢含量的限制
  • 批准号:
    22KJ1065
  • 财政年份:
    2023
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of an automatic integration range determination method for pulsed neutron diffraction data collected from protein single crystals
开发从蛋白质单晶收集的脉冲中子衍射数据的自动积分范围确定方法
  • 批准号:
    22K06157
  • 财政年份:
    2022
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Correction Of Microstructural Aberrations In Neutron Diffraction Strain Measurements In Power Plant Structures.
发电厂结构中子衍射应变测量中微观结构像差的校正。
  • 批准号:
    2606920
  • 财政年份:
    2021
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Studentship
Correction of microstructural aberrations in Neutron Diffraction strain measurements in power plant structures
发电厂结构中子衍射应变测量中微观结构像差的校正
  • 批准号:
    2621984
  • 财政年份:
    2021
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Studentship
Development of two-dimensional strain mapping technique around a fatigue crack using the pulsed neutron Bragg-edge transmission imaging and neutron diffraction
使用脉冲中子布拉格边透射成像和中子衍射开发疲劳裂纹周围的二维应变映射技术
  • 批准号:
    20K20106
  • 财政年份:
    2020
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Direct observation of symmetrization of hydrogen bond in ice using high-pressure neutron diffraction technique
利用高压中子衍射技术直接观察冰中氢键的对称性
  • 批准号:
    20K05425
  • 财政年份:
    2020
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neutron diffraction magnetic structure analysis near the quantum criticality of ferromagnetic metals
铁磁金属量子临界点附近的中子衍射磁结构分析
  • 批准号:
    19K03756
  • 财政年份:
    2019
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a bespoke sample environment for operando neutron diffraction studies of chemical looping materials and processes.
开发用于化学循环材料和工艺的操作中子衍射研究的定制样品环境。
  • 批准号:
    2281207
  • 财政年份:
    2019
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Studentship
Development of peak deconvolution method for pulsed neutron diffraction data of protein long lattice crystals
蛋白质长晶格晶体脉冲中子衍射数据峰反卷积方法的发展
  • 批准号:
    19K16083
  • 财政年份:
    2019
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
HFIR-SNS Advanced Neutron Diffraction and Scattering 2019 Workshop (HANDS2019)
2019年HFIR-SNS高级中子衍射与散射研讨会(HANDS2019)
  • 批准号:
    1915748
  • 财政年份:
    2019
  • 资助金额:
    $ 95.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了