WINDTWIN: Condition monitoring of wind turbine gearbox toward digital twin ecosystem
WINDTWIN:面向数字孪生生态系统的风力涡轮机齿轮箱状态监测
基本信息
- 批准号:EP/Y028325/1
- 负责人:
- 金额:$ 25.55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The wind turbine gearbox (WTG) unusually operates in harsh working environments, making the WTG prone to failures and resulting in unexpected shutdowns and enormous economic loss. Therefore, it is critical to conduct condition monitoring and predictive maintenance for the safe and efficient operation of wind turbines. This project aims to develop a digital twin ecosystem for the health management of wind turbine gearboxes. More specifically, an intelligent modeling calibration algorithm is developed for the high-fidelity model establishment of WTG. Also, novel fatigue models are developed for simulating the degradation characteristics of WTG. To achieve the seamless convergence of the physical structures of WTG with its virtual model, first, novel health indicators are developed for estimating the WTG degradation progression; second, the Bayesian inference is improved to include uncertainties existing in measurements and models for bridging the physical structures and virtual models. The novel health indicators and improved Bayesian inference can help update the virtual model in real-manner, ensuring the degradation behaviors of WTG can be well revealed and reflected by the virtual models. Moreover, novel transfer learning algorithms are developed to minimize the discrepancy between the virtual models and individual wind turbines and extend the capability of the developed WTG digital twin ecosystem. With the developed digital twin WTG health management ecosystem, safe and reliable operations of wind turbines can be realized, and the maintenance cost and downtime of the wind turbine are expected to be reduced significantly (around 35% and 75%, respectively); also, the productivity of wind turbines could increase by 30%. The unique research approach of this fellowship will be hosted by Prof. Asoke Nandi from Brunel University London and co-supervised by secondment supervisor Prof. Daniele Dini from Imperial College London.
风力涡轮机齿轮箱(WTG)在恶劣的工作环境中异常工作,使得WTG容易发生故障,造成意外停机和巨大的经济损失。因此,进行状态监测和预测性维护对于风力发电机的安全高效运行至关重要。该项目旨在为风力涡轮机齿轮箱的健康管理开发一个数字孪生生态系统。更具体地说,智能建模校准算法开发的高保真模型建立的风力发电机。此外,新的疲劳模型的开发,用于模拟风力发电机的退化特性。为了实现风力发电机的物理结构与虚拟模型的无缝衔接,首先,开发了新的健康指标来估计风力发电机的退化进程;其次,改进了贝叶斯推理,以包括测量和模型中存在的不确定性,用于桥接物理结构和虚拟模型。新的健康指标和改进的贝叶斯推理可以帮助实时更新虚拟模型,确保WTG的退化行为可以很好地揭示和反映的虚拟模型。此外,开发了新的迁移学习算法,以最大限度地减少虚拟模型和单个风力涡轮机之间的差异,并扩展所开发的WTG数字孪生生态系统的能力。通过开发的数字孪生风力发电机组健康管理生态系统,可以实现风力发电机组的安全可靠运行,预计风力涡轮机的维护成本和停机时间将大幅降低(分别约为35%和75%),风力发电机组的生产率也将提高30%。该奖学金的独特研究方法将由伦敦布鲁内尔大学的Asoke南迪教授主持,并由帝国理工学院伦敦的借调导师Daniele Dini教授共同监督。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ke Feng其他文献
Kinetics of biocathodic electron transfer in a bioelectrochemical system coupled with chemical absorption for NO removal
生物电化学系统中生物阴极电子转移动力学与化学吸收相结合以去除 NO
- DOI:
10.1016/j.chemosphere.2020.126095 - 发表时间:
2020 - 期刊:
- 影响因子:8.8
- 作者:
Jingkai Zhao;Ke Feng;Shu-Hui Liu;Chi-Wen Lin;Shihan Zhang;Sujing Li;Wei Li;Jianmeng Chen - 通讯作者:
Jianmeng Chen
Fetal growth restriction mice are more likely to exhibit depression‐like behaviors due to stress‐induced loss of dopaminergic neurons in the VTA
由于压力导致 VTA 中多巴胺能神经元的丧失,胎儿生长受限的小鼠更有可能表现出抑郁样行为
- DOI:
10.1096/fj.202000534r - 发表时间:
2020-08 - 期刊:
- 影响因子:0
- 作者:
Li Ma;Meng‐Xue Tian;Qiao‐Yi Sun;Na‐Na Liu;Jian‐Feng Dong;Ke Feng;Yu‐Kang Wu;Yu‐Xi Wang;Gui‐Ying Wang;Wen Chen;Jia‐Jie Xi;Jiu‐Hong Kang - 通讯作者:
Jiu‐Hong Kang
Tuning Optical and Electronic Properties in Low-Toxicity Organic-Inorganic Hybrid (CH3NH3)(3)Bi2I9 under High Pressure
高压下调节低毒性有机-无机杂化物 (CH3NH3)(3)Bi2I9 的光学和电子性能
- DOI:
10.1021/acs.jpclett.9b00595 - 发表时间:
2019 - 期刊:
- 影响因子:5.7
- 作者:
Zhang Long;Liu Chunming;Lin Yu;Wang Kai;Ke Feng;Liu Cailong;Mao Wendy L;Zou Bo - 通讯作者:
Zou Bo
An order spectrum based method to ensure consistent monitoring through Vold-Kalman filter order tracking
基于阶次谱的方法,通过 Vold-Kalman 滤波器阶次跟踪确保一致监控
- DOI:
10.1784/204764216819708078 - 发表时间:
2016-09 - 期刊:
- 影响因子:0
- 作者:
Kesheng Wang;Ke Feng;Ming J. Zuo - 通讯作者:
Ming J. Zuo
Mechanism underlying sodium isoascorbate inhibition of browning of fresh-cut mushroom (Agaricus bisporus)
异抗坏血酸钠抑制鲜切蘑菇(双孢蘑菇)褐变的机制
- DOI:
10.1016/j.postharvbio.2020.111357 - 发表时间:
2020-11 - 期刊:
- 影响因子:7
- 作者:
Dongying Xu;Sitong Gu;Fuhui Zhou;Wenzhong Hu;Ke Feng;Chen Chen;Aili Jiang - 通讯作者:
Aili Jiang
Ke Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Railway Quantum Inertial Navigation System for Condition Based Monitoring (Phase 2)
铁路量子惯性导航状态监测系统(二期)
- 批准号:
10107100 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Small Business Research Initiative
Enhancing Condition Monitoring and Prognostics of Variable Speed Motor Drives Using Machine Learning and IoT Technologies
使用机器学习和物联网技术增强变速电机驱动器的状态监测和预测
- 批准号:
2910604 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Studentship
Condition Monitoring of Aircraft Propulsion for Automated Diagnostics
用于自动诊断的飞机推进状态监测
- 批准号:
LP220200934 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Linkage Projects
Optimising CNC Machine Tool Coolant Fluid condition to prolong usage and efficiency of an expensive essential resource thereby reducing cost, improving production quality and protecting operators using a unique and innovative Coolant Monitoring Analyser
使用独特和创新的冷却液监测分析仪优化数控机床冷却液条件,延长昂贵的重要资源的使用时间和效率,从而降低成本、提高生产质量并保护操作员
- 批准号:
10075142 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Grant for R&D
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
- 批准号:
10629554 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Next generation predictive maintenance for wind turbine blade/hub/rotor through novel online condition monitoring/root cause analysis: MONTURWIND
通过新颖的在线状态监测/根本原因分析对风力涡轮机叶片/轮毂/转子进行下一代预测性维护:MONTUWIND
- 批准号:
10041137 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Collaborative R&D
Condition Monitoring of Cable Structures using Digital Twin
使用数字孪生对电缆结构进行状态监测
- 批准号:
2891654 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Studentship
Machine Learning for condition monitoring of production equipment
用于生产设备状态监测的机器学习
- 批准号:
10075524 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Grant for R&D
Demonstrating the feasibility of applying machine learning models to railway condition data: Engine condition monitoring and failure prediction
展示将机器学习模型应用于铁路状况数据的可行性:发动机状况监测和故障预测
- 批准号:
10080979 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Collaborative R&D
Condition Monitoring for High-Voltage Insulation System using Deep Learning based on Waveform Characteristics of Partial Discharge
基于局部放电波形特征的深度学习高压绝缘系统状态监测
- 批准号:
23K03792 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)