DEMO Discovery of efficient Enzyme-like Metal Organic frameworks to activate biomethane at low temperature
演示:发现高效的类酶金属有机框架,可在低温下激活生物甲烷
基本信息
- 批准号:EP/Y032799/1
- 负责人:
- 金额:$ 33.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The main objective in DEMO is to provide high-level hands-on, computational and transferable skill training to 13 Doctoral Candidates (DC) through a Joint Doctorate Program and to create a new generation of experts in hybrid catalysis. DEMO uses light (C1-C4) alkanes as example to study the conversion of a sustainable molecule (biomethane) into a relevant chemical in industry (methanol). This project combines 9 world-class research groups, experts in chemical engineering, organic chemistry, catalysis, modelling and spectroscopy from 7 countries. The 9 partners in academic (3), research centre (3), SME (2) and industrial (1) fields will provide recruited DCs with unique perspectives, preparing DCs for their personal career in research with specific skillsets. DEMO will integrate machine learning, organic chemistry, ab initio modelling, high-throughput and reactor engineering and in situ spectroscopy to discover enzyme-like species in Metal Organic Frameworks (MOFs). Specifically, DEMO will follow an interconnected strategy to discover optimal catalyst candidates: a) virtually generate a dataset with active species in MOFs and screen via Machine Learning; b) test the dataset value of a large sample dataset via experimental high-throughput engineering and modelling; c) understand testing outputs through in situ spectroscopy, titration kinetics and modelling; d) optimise protocols for synthetic materials towards biological analogies and engineer reaction conditions to search solvation phenomena. This way, DEMO expects to have a broad impact on the scientific community, EU industry and society by providing high-quality training in hybrid catalysis.
DEMO的主要目标是通过联合博士学位课程为13名博士候选人(DC)提供高水平的动手,计算和可转移技能培训,并培养新一代混合催化专家。DEMO以轻质(C1-C4)烷烃为例,研究将可持续分子(生物甲烷)转化为工业中的相关化学品(甲醇)。该项目汇集了来自7个国家的9个世界级研究小组以及化学工程、有机化学、催化、建模和光谱学领域的专家。来自学术(3),研究中心(3),中小企业(2)和工业(1)领域的9个合作伙伴将为招募的DCs提供独特的视角,为DCs的个人研究职业生涯做好准备。DEMO将整合机器学习,有机化学,从头建模,高通量和反应器工程以及原位光谱学,以发现金属有机框架(MOF)中的酶样物质。具体而言,DEMO将遵循一种相互关联的策略来发现最佳催化剂候选物:a)通过机器学习虚拟生成MOFs中活性物种的数据集并进行筛选; B)通过实验高通量工程和建模测试大样本数据集的数据集值; c)通过原位光谱学,滴定动力学和建模了解测试输出; d)优化合成材料的方案,使之与生物学相似,并设计反应条件,以研究溶剂化现象。通过这种方式,DEMO希望通过提供高质量的混合催化培训,对科学界,欧盟工业和社会产生广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Poulston其他文献
Experimental assessment of reverse water gas shift integrated with chemical looping for low-carbon fuels
低碳燃料的逆水煤气变换与化学循环相结合的实验评估
- DOI:
10.1016/j.jcou.2024.102775 - 发表时间:
2024 - 期刊:
- 影响因子:7.7
- 作者:
Syed Zaheer Abbas;Christopher de Leeuwe;A. Amieiro;Stephen Poulston;Vincenzo Spallina - 通讯作者:
Vincenzo Spallina
Development of new palladium-promoted ethylene scavenger
- DOI:
10.1016/j.postharvbio.2006.11.020 - 发表时间:
2007-08-01 - 期刊:
- 影响因子:
- 作者:
Leon A. Terry;Thomas Ilkenhans;Stephen Poulston;Liz Rowsell;Andrew W.J. Smith - 通讯作者:
Andrew W.J. Smith
Electrochemical promotion in a monolith electrochemical plate reactor applied to simulated and real automotive pollution control
- DOI:
10.1007/s11244-006-0140-4 - 发表时间:
2007-06-01 - 期刊:
- 影响因子:3.000
- 作者:
Stella P. Balomenou;Dimitrios Tsiplakides;Constantinos G. Vayenas;Stephen Poulston;Valerie Houel;Paul Collier;Athanasios G. Konstandopoulos;Christos Agrafiotis - 通讯作者:
Christos Agrafiotis
Stephen Poulston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: Cost-Efficient and Confident Sampling for Modern Scientific Discovery
协作研究:现代科学发现的成本高效且可靠的采样
- 批准号:
2316012 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Standard Grant
Acceleration of risk gene discovery for Tic Disorders through large-scale collaboration
通过大规模合作加速抽动症风险基因的发现
- 批准号:
10726443 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Data-driven discovery of novel terpene synthases and its utilization for efficient production of structurally divergent compounds through a light control system in bacteria
数据驱动的新型萜烯合酶的发现及其通过细菌中的光控制系统有效生产结构不同的化合物
- 批准号:
23K13898 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
DMS/NIGMS 2: A Stability Driven Recommendation System for Efficient Disease Mechanistic Discovery
DMS/NIGMS 2:用于高效疾病机制发现的稳定性驱动推荐系统
- 批准号:
10793779 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Collaborative Research: Cost-Efficient and Confident Sampling for Modern Scientific Discovery
协作研究:现代科学发现的成本高效且可靠的采样
- 批准号:
2316011 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Standard Grant
BRITE Pivot: Advancing Knowledge in Water-Shell Structure Interaction Through Discovery of Efficient Hydrodynamic and Structural Thin-shell Forms
BRITE Pivot:通过发现有效的流体动力学和结构薄壳形式来推进水壳结构相互作用的知识
- 批准号:
2227489 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Standard Grant
Establishment of efficient pathological analysis and drug discovery platform for amyotrophic lateral sclerosis using disease specific iPSCs
利用疾病特异性 iPSC 建立肌萎缩侧索硬化症的高效病理分析和药物发现平台
- 批准号:
23K06975 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
L2M NSERC - Fibre-optic label-free single protein analysis for more efficient drug discovery assays
L2M NSERC - 光纤无标记单蛋白分析,可实现更高效的药物发现分析
- 批准号:
580665-2023 - 财政年份:2022
- 资助金额:
$ 33.22万 - 项目类别:
Idea to Innovation
Developing an efficient compound screening approach for the discovery of novel GPCR receptor antagonists
开发一种有效的化合物筛选方法来发现新型 GPCR 受体拮抗剂
- 批准号:
2747439 - 财政年份:2022
- 资助金额:
$ 33.22万 - 项目类别:
Studentship
Integrating innovative computational and organic synthesis for efficient asymmetric catalyst discovery
整合创新计算和有机合成以实现高效的不对称催化剂发现
- 批准号:
RGPIN-2022-03383 - 财政年份:2022
- 资助金额:
$ 33.22万 - 项目类别:
Discovery Grants Program - Individual