Integrating innovative computational and organic synthesis for efficient asymmetric catalyst discovery

整合创新计算和有机合成以实现高效的不对称催化剂发现

基本信息

  • 批准号:
    RGPIN-2022-03383
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Background and objectives. Developing novel synthetic methodologies or molecules (eg, new/better catalysts) often require long, iterative, and cost-ineffective discovery and development processes. In contrast to NMR spectroscopy, mass spectrometry and other techniques used routinely, computational chemistry is rarely part of the organic chemistry toolbox. In this context, our research program focuses on the integration of synthetic organic and computational chemistry to increase the success rate in both catalyst and drug discovery. To do so, we develop and apply our platforms VIRTUAL CHEMIST (for the design of asymmetric catalysts) and FORECASTER (for the discovery of bioactive molecules). As all the software development and applications are done in our labs, the feedback loop enables the development of constantly improved software and molecules. We propose to further develop these tools and apply them to the design and synthesis of novel asymmetric catalysts and covalent enzyme inhibitors. Computational chemistry. VIRTUAL CHEMIST and FORECASTER rely on molecular mechanics (MM) for its speed which, in turn, uses QM-derived parameters, for their accuracy. With the ever-increasing computational power, some of the computations could now be done at the QM level while machine learning (ML) techniques could be exploited to further improve accuracy. Thus, we propose to incorporate more QM functionalities for improved accuracy (prediction of stereochemical outcome, catalytic activity and reactivity of drugs) as well as ML techniques to improve the MM predictions through ML optimization of the force fields currently used and guide the selection of molecules for screening. Organic/medicinal chemistry. Applications of these tools to established reactions (eg, Shi epoxidation) have started and will further demonstrate the accuracy of the computational predictions and their use in the design of asymmetric catalysts. We propose to apply the new QM and ML features to additional reactions including novel reactions with unknown mechanisms and/or no asymmetric versions. For these, we will 1) investigate the reaction mechanisms using a combination of organic and computational methods, 2) design/discover catalysts leading to improved stereoselectivity and 3) synthesize and test these catalysts. Similarly, while our covalent docking program has been used to develop very potent covalent inhibitors, their reactivity will be refined using a combination of computational prediction, synthesis and testing. All of these wet-lab experiments will not only produce novel molecules but provide information to the software developers for further improvements. Impact. This research program will illustrate the benefit of integrated computational/experimental chemistry and the paradigm shift for organic chemists to integrate computational tools in their toolbox. HQP will be trained on highly demanded techniques such as QM and ML as well as advanced organic synthesis.
背景和目标。开发新的合成方法或分子(例如,新的/更好的催化剂)通常需要长期,迭代和成本效益低的发现和开发过程。与核磁共振光谱、质谱和其他常规使用的技术相比,计算化学很少是有机化学工具箱的一部分。在这种情况下,我们的研究计划侧重于有机合成和计算化学的整合,以提高催化剂和药物发现的成功率。为此,我们开发并应用了我们的平台VIRTUAL CHEMIST(用于设计不对称催化剂)和FORECASTER(用于发现生物活性分子)。由于所有的软件开发和应用都是在我们的实验室中完成的,反馈回路使得软件和分子的开发能够不断改进。我们建议进一步开发这些工具,并将其应用于新型不对称催化剂和共价酶抑制剂的设计和合成。计算化学。虚拟化学家和预报员依赖于分子力学(MM)的速度,反过来,使用QM导出的参数,其准确性。随着计算能力的不断提高,一些计算现在可以在QM级别完成,而机器学习(ML)技术可以用来进一步提高准确性。因此,我们建议纳入更多的QM功能以提高准确性(预测立体化学结果,催化活性和药物反应性)以及ML技术,通过ML优化目前使用的力场来改善MM预测,并指导筛选分子的选择。 有机/药物化学。这些工具的应用程序建立的反应(如,石环氧化)已经开始,并将进一步证明计算预测的准确性和它们在不对称催化剂的设计中的使用。我们建议将新的QM和ML功能应用于其他反应,包括具有未知机制和/或没有不对称版本的新型反应。对于这些,我们将1)使用有机和计算方法的组合研究反应机理,2)设计/发现导致改进的立体选择性的催化剂,3)合成和测试这些催化剂。类似地,虽然我们的共价对接程序已被用于开发非常有效的共价抑制剂,但它们的反应性将使用计算预测、合成和测试的组合来改进。所有这些湿实验室实验不仅会产生新的分子,而且会为软件开发人员提供进一步改进的信息。冲击该研究计划将说明集成计算/实验化学的好处,以及有机化学家将计算工具集成到工具箱中的范式转变。HQP将接受QM和ML以及高级有机合成等高要求技术的培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moitessier, Nicolas其他文献

Constrained Peptidomimetics Reveal Detailed Geometric Requirements of Covalent Prolyl Oligopeptidase Inhibitors
  • DOI:
    10.1021/jm901013a
  • 发表时间:
    2009-11-12
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Lawandi, Janice;Toumieux, Sylvestre;Moitessier, Nicolas
  • 通讯作者:
    Moitessier, Nicolas
Development of a Computational Tool to Rival Experts in the Prediction of Sites of Metabolism of Xenobiotics by P450s
  • DOI:
    10.1021/ci3003073
  • 发表时间:
    2012-09-01
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Campagna-Slater, Valerie;Pottel, Joshua;Moitessier, Nicolas
  • 通讯作者:
    Moitessier, Nicolas
A naturally occurring G11S mutation in the 3C-like protease from the SARS-CoV-2 virus dramatically weakens the dimer interface.
  • DOI:
    10.1002/pro.4857
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Wang, Guanyu;Venegas, Felipe A.;Rueda, Andres M.;Weerasinghe, Nuwani W.;Uggowitzer, Kevin A.;Thibodeaux, Christopher J.;Moitessier, Nicolas;Mittermaier, Anthony K.
  • 通讯作者:
    Mittermaier, Anthony K.
3-Oxo-hexahydro-1H-isoindole-4-carboxylic Acid as a Drug Chiral Bicyclic Scaffold: Structure-Based Design and Preparation of Conformationally Constrained Covalent and Noncovalent Prolyl Oligopeptidase Inhibitors
  • DOI:
    10.1021/acs.jmedchem.5b01296
  • 发表时间:
    2016-05-12
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Mariaule, Gaelle;De Cesco, Stephane;Moitessier, Nicolas
  • 通讯作者:
    Moitessier, Nicolas
Directing/protecting groups mediate highly regioselective glycosylation of monoprotected acceptors
  • DOI:
    10.1016/j.tet.2011.07.026
  • 发表时间:
    2011-10-28
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Lawandi, Janice;Rocheleau, Sylvain;Moitessier, Nicolas
  • 通讯作者:
    Moitessier, Nicolas

Moitessier, Nicolas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Moitessier, Nicolas', 18)}}的其他基金

Integrating organic chemistry and computational chemistry for efficient molecular discovery
整合有机化学和计算化学以实现高效的分子发现
  • 批准号:
    RGPIN-2016-04566
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating organic chemistry and computational chemistry for efficient molecular discovery
整合有机化学和计算化学以实现高效的分子发现
  • 批准号:
    RGPIN-2016-04566
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Efficient Molecular Mechanics Methods for Application in Drug Discovery and Design.
开发用于药物发现和设计的有效分子力学方法。
  • 批准号:
    550083-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Alliance Grants
Integrating organic chemistry and computational chemistry for efficient molecular discovery
整合有机化学和计算化学以实现高效的分子发现
  • 批准号:
    RGPIN-2016-04566
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating organic chemistry and computational chemistry for efficient molecular discovery
整合有机化学和计算化学以实现高效的分子发现
  • 批准号:
    RGPIN-2016-04566
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Toward the accurate prediction of adverse drug reactions and drug-drug interactions using novel MM methods and QM-derived rules
使用新型 MM 方法和 QM 衍生规则准确预测药物不良反应和药物相互作用
  • 批准号:
    505509-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Collaborative Research and Development Grants
Integrating organic chemistry and computational chemistry for efficient molecular discovery
整合有机化学和计算化学以实现高效的分子发现
  • 批准号:
    RGPIN-2016-04566
  • 财政年份:
    2017
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating organic chemistry and computational chemistry for efficient molecular discovery
整合有机化学和计算化学以实现高效的分子发现
  • 批准号:
    RGPIN-2016-04566
  • 财政年份:
    2016
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Toward the accurate prediction of P450-mediated metabolism and adverse drug reactions using novel MM methods and QM-derived rules.
使用新的 MM 方法和 QM 衍生规则准确预测 P450 介导的代谢和药物不良反应。
  • 批准号:
    469677-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Collaborative Research and Development Grants
Predictive computational methods and experimental studies for the discovery of carbohydrate-based catalysts and directing protecting groups
用于发现碳水化合物基催化剂和引导保护基团的预测计算方法和实验研究
  • 批准号:
    283318-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Elucidation of semi-solid dynamics by innovative computational method and challenge to material microstructure refinement
通过创新计算方法阐明半固体动力学以及对材料微观结构细化的挑战
  • 批准号:
    23H00160
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Targeting regenerative reprogramming in colorectal cancer
靶向结直肠癌的再生重编程
  • 批准号:
    10644262
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
Integrated experimental and computational approach for accurate patient-specific vascular embolization
用于准确的患者特异性血管栓塞的综合实验和计算方法
  • 批准号:
    10724852
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
The Role of Myeloid-Derived Suppressor Cells in Resistance to Bipolar Androgen Therapy in Patients with Advanced Prostate Cancer
骨髓源性抑制细胞在晚期前列腺癌患者双极雄激素治疗耐药中的作用
  • 批准号:
    10648749
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
Development of Innovative Fat Transplantation Based on Single Cell Analysis and Computational Biology of Subcutaneous Adipose Tissue-Derived Cells
基于皮下脂肪组织来源细胞的单细胞分析和计算生物学的创新脂肪移植的发展
  • 批准号:
    22H03246
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ribo-STAMPEDE: novel tools for molecular profiling of brain cell types
Ribo-STAMPEDE:脑细胞类型分子分析的新工具
  • 批准号:
    10506300
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
Understanding the molecular and functional architecture of diverse body-brain pathways
了解不同体脑通路的分子和功能结构
  • 批准号:
    10503462
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
Conduits: Mount Sinai Health System Translational Science Hub
管道:西奈山卫生系统转化科学中心
  • 批准号:
    10662572
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
Innovative computational methods, including agent-based modelling and the software BioDynaMo, to model neural development.
创新的计算方法,包括基于代理的建模和软件 BioDynaMo,用于模拟神经发育。
  • 批准号:
    2753922
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Studentship
Single-cell label-free identification of senescence by Raman microscopy and spatial genomics
通过拉曼显微镜和空间基因组学进行单细胞无标记衰老鉴定
  • 批准号:
    10684751
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了