SPINE: Resilience-Based Design of Biologically Inspired Columns for Next-Generation Accelerated Bridge Construction
SPINE:基于弹性的仿生柱设计,用于下一代加速桥梁施工
基本信息
- 批准号:EP/R039178/1
- 负责人:
- 金额:$ 30.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A resilience-based design approach plays an important role in the design of new bridges and other structures. The structural elements of bridges are often directly exposed to the environment without any protection. Even though life-cycle and sustainability criteria have been incorporated in new design guidelines, there is still no design and construction technique that can fully address the future demands of a resilient and sustainable transport infrastructure. The aim of this research is to produce innovative and transformative engineering solutions for a durable, low-maintenance, low-cost, and demountable accelerated bridge construction technique, which is resilient to environmental threats, and natural hazards. The solutions will include a completely new resilience-based bridge design approach and biologically inspired composite columns for next-generation accelerated bridge construction.Towards this goal, this research will construct an innovative composite bridge column, which is inspired by the mechanics of the human spine. In the human spine, intervertebral discs provide flexibility, dissipate energy from the movements of the human body, and absorb and transmit forces without damaging the vertebrae bones. The proposed spinal bridge column will be constructed using precast composite segments (the 'vertebrae'). A new smart composite material will be developed and used in between of these solid composite segments (the 'intervertebral discs'). This will keep the vertebrae from rubbing against each other, transfer the shear forces through friction, absorb the impact due to the rocking of vertebrae, and provide mechanical damping under dynamic loading. Finally, the vertebrae and intervertebral discs will be tied together using an unbonded composite post-tensioning tendon (the 'longitudinal ligament'), to provide self-centring mechanism in the column when subjected to lateral force. In this 24 moths research, the underlying science of the new spinal column will be investigated through experimental testing and numerical modelling. During the entire duration of the project a series of review meetings, short visits to academics as well as industry partners, and an international workshop will be organised. This interaction is deemed vital for the co-development of new concepts, the transfer of know-how and the resilient and sustainable accelerated bridge construction.
基于连续性的设计方法在新桥梁和其他结构的设计中起着重要的作用。桥梁的结构构件通常直接暴露在环境中,没有任何保护。尽管生命周期和可持续性标准已被纳入新的设计准则,但仍然没有设计和施工技术可以完全满足未来对弹性和可持续交通基础设施的需求。这项研究的目的是为耐用,低维护,低成本和可拆卸的加速桥梁施工技术提供创新和变革性的工程解决方案,该技术能够抵御环境威胁和自然灾害。这些解决方案将包括一种全新的基于生物学的桥梁设计方法和生物启发的复合材料柱,用于下一代加速桥梁建设。为了实现这一目标,本研究将构建一种创新的复合材料桥梁柱,其灵感来自于人体脊柱的力学。在人体脊柱中,椎间盘提供柔韧性,耗散人体运动的能量,并吸收和传递力而不损伤椎骨。拟建脊柱桥柱将采用预制复合材料节段(“脊椎”)建造。一种新的智能复合材料将被开发并用于这些固体复合材料节段(“椎间盘”)之间。这将防止椎骨相互摩擦,通过摩擦传递剪切力,吸收由于椎骨摇摆引起的冲击,并在动态负载下提供机械阻尼。最后,椎骨和椎间盘将使用未粘合的复合后张肌腱(“纵向韧带”)绑在一起,以在受到侧向力时在柱中提供自定心机制。在这项为期24个月的研究中,将通过实验测试和数值模拟来研究新脊柱的基础科学。在整个项目期间,将组织一系列审查会议,对学术界和行业合作伙伴的短期访问,以及国际研讨会。这种互动对于新概念的共同开发、技术转让以及弹性和可持续的加速桥梁建设至关重要。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lateral dynamic bridge deck-pier interaction for ultra-high-speed Hyperloop train loading
超高速超级高铁列车装载的横向动态桥面-桥墩相互作用
- DOI:10.1680/jbren.19.00011
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ahmadi E
- 通讯作者:Ahmadi E
Experimental investigation of a novel class of self-centring spinal rocking column
- DOI:10.1016/j.jsv.2018.08.034
- 发表时间:2018-12
- 期刊:
- 影响因子:4.7
- 作者:M. Kashani;A. Gonzalez-Buelga;Rachael P. Thayalan;Alistair R. Thomas;N. Alexander
- 通讯作者:M. Kashani;A. Gonzalez-Buelga;Rachael P. Thayalan;Alistair R. Thomas;N. Alexander
On the use of entangled wire materials in pre-tensioned rocking columns
- DOI:10.1088/1742-6596/1264/1/012007
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:E. Ahmadi;M. Kashani
- 通讯作者:E. Ahmadi;M. Kashani
A new approach to model rocking motion of post-tensioned segmental columns
模拟后张节段柱摇摆运动的新方法
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ahmadi E.
- 通讯作者:Ahmadi E.
Numerical investigation of nonlinear static and dynamic behaviour of self-centring rocking segmental bridge piers
- DOI:10.1016/j.soildyn.2019.105876
- 发表时间:2020
- 期刊:
- 影响因子:4
- 作者:E. Ahmadi;M. Kashani
- 通讯作者:E. Ahmadi;M. Kashani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammad Kashani其他文献
Mohammad Kashani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammad Kashani', 18)}}的其他基金
(DISC) Demountable, Resilient, and Sustainable Construction Technology for Next- Generation Biologically Inspired Buildings
(DISC) 下一代仿生建筑的可拆卸、弹性和可持续建筑技术
- 批准号:
EP/Z000998/1 - 财政年份:2024
- 资助金额:
$ 30.89万 - 项目类别:
Fellowship
相似海外基金
Place-Based, Human-Centered Networks to Enhance Community Resilience and Equity
以地方为基础、以人为本的网络,以增强社区的弹性和公平性
- 批准号:
2242719 - 财政年份:2024
- 资助金额:
$ 30.89万 - 项目类别:
Standard Grant
CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
- 批准号:
2332082 - 财政年份:2024
- 资助金额:
$ 30.89万 - 项目类别:
Continuing Grant
Seismic Resilience of Egypt's Built Environment: A GIS-Based Framework for Assessment and Mitigation (Egypt-SeReAM)
埃及建筑环境的抗震能力:基于 GIS 的评估和缓解框架 (Egypt-SeReAM)
- 批准号:
EP/Y000900/1 - 财政年份:2024
- 资助金额:
$ 30.89万 - 项目类别:
Research Grant
Listen, Learn & Leap: Co-producing Equitable and Sustainable Nature-based Solutions for Climate Resilience in East African Cities
聆听、学习
- 批准号:
NE/Z503472/1 - 财政年份:2024
- 资助金额:
$ 30.89万 - 项目类别:
Research Grant
CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
- 批准号:
2332081 - 财政年份:2024
- 资助金额:
$ 30.89万 - 项目类别:
Continuing Grant
Next-generation system resilience-based design of infrastructure facilities
基于下一代系统弹性的基础设施设计
- 批准号:
DE240100207 - 财政年份:2024
- 资助金额:
$ 30.89万 - 项目类别:
Discovery Early Career Researcher Award
CAREER: An Integrated Framework for Resilience Analytics: From Physics-based Modeling of Building Components to Dynamics of Community Level Recovery
职业:弹性分析的综合框架:从基于物理的建筑组件建模到社区层面恢复的动态
- 批准号:
2347722 - 财政年份:2023
- 资助金额:
$ 30.89万 - 项目类别:
Standard Grant
KEEP ON KEEPING ON: Follow-On to Building Resilience by developing arts-based resources to reduce young people's depression and anxiety (MR/S03580X/1)
继续坚持:通过开发基于艺术的资源来减少年轻人的抑郁和焦虑,从而增强韧性(MR/S03580X/1)
- 批准号:
AH/X004708/1 - 财政年份:2023
- 资助金额:
$ 30.89万 - 项目类别:
Research Grant
Water justice & youth mental health resilience: co-creating art-based solutions with Alaskan Native and Awajun communities
水正义
- 批准号:
AH/X008061/1 - 财政年份:2023
- 资助金额:
$ 30.89万 - 项目类别:
Research Grant
Resilience of Faith-Based Social Enterprises: An International Comparative Study of Survival Strategies under the COVID-19 Pandemic
基于信仰的社会企业的韧性:COVID-19 大流行下生存策略的国际比较研究
- 批准号:
23K01955 - 财政年份:2023
- 资助金额:
$ 30.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)