Formulating microstructural equivalence: A route to consistent scale-up of medicine manufacture

制定微观结构等效性:药物生产持续扩大规模的途径

基本信息

  • 批准号:
    EP/Z532988/1
  • 负责人:
  • 金额:
    $ 19.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The development of a new medicinal product requires a formulation to be designed that provides consistent performance when manufactured at scale, and when the medicine is used by patients in real-world scenarios. To meet the high regulatory burden for medicine performance a number of quality (Q) requirements must be met. Namely that each batch of the product must contain the correct qualitative material composition (Q1), in a defined quantitative ratio (Q2), that generates a specific three-dimensional arrangement of those materials (Q3, the microstructure). Manufacturing operations are designed so that products meet these quality requirements.Over the last fifteen years under the quality-by-design concept, substantial R&D effort into molecular/process modelling and digital twinning has begun to reap rewards in terms of accelerated formulation design. The Q3 microstructure has emerged as key knowledge gap to the engineering of product performance. A formulation microstructure dictates the manufacturing behaviour and quality attributes as diverse as powder flow and tablet compaction, the dispersion state and viscosity of suspensions and topical creams, gels and ointments, and the fluidization and aerosolization of inhalation medicines. The ability to characterise microstructure to map and quantify its impact on performance is an unmet challenge, particularly for powder-based products. X-ray imaging has emerged as a potential solution to powder analysis, although many technical and computational barriers exist to unlocking its potential.In this project, we aim to develop quantitative x-ray imaging techniques to characterize the microstructure of dry powder inhalation (DPI) products. DPI formulations are challenging products for x-ray imaging, due to high particle density, small particle size of the active pharmaceutical ingredient (API) and the low concentrations of API relative to excipient substances. Nevertheless, studying DPIs is a challenge worth investigating, since the need for techniques to assess microstructure has been identified as a major barrier to establishing bioequivalence between innovator and generic products by regulatory agencies in Europe (EMA, MHRA) and the United States of America (US FDA). This creates a barrier for market entry of cheaper generic products, and the economic advantages that this could bring for healthcare systems.The outcome of this project will be the availability of analytical tools to support the manufacture of innovative therapeutics with a specific focus on microstructure-guided product engineering. Several research centres in the UK have emerged as world-leaders in translational development and medicines manufacturing. The science of microstructural characterization would open up a powerful route to exploiting the digital product modelling tools that are emerging from that research. The ultimate goal of our research is to exploit early identification of a formulation microstructure to engineer manufacturability into early-stage products right from the start of their development, and accelerate the scale-up to clinical supply.
新药品的开发需要设计一种配方,该配方在大规模生产时以及患者在现实世界中使用药物时提供一致的性能。为了满足药物性能的高监管负担,必须满足许多质量(Q)要求。也就是说,每批产品必须包含正确的定性材料成分(Q1),以定义的定量比例(Q2),产生这些材料的特定三维排列(Q3,微观结构)。在过去的十五年里,在质量源于设计的理念下,大量的研发工作进入分子/过程建模和数字孪生,已经开始在加速配方设计方面获得回报。Q3微观结构已成为产品性能工程的关键知识缺口。制剂的微观结构决定了其制造行为和质量属性,如粉末流动和片剂压实,悬浮液和局部乳膏、凝胶和软膏的分散状态和粘度,以及吸入药物的流化和雾化。对微观结构进行分析以绘制和量化其对性能的影响的能力是一个尚未满足的挑战,特别是对于粉末基产品。尽管释放其潜力存在许多技术和计算障碍,但X射线成像已成为粉末分析的潜在解决方案。在本项目中,我们的目标是开发定量X射线成像技术来表征干粉吸入剂(DPI)产品的微观结构。DPI制剂对于X射线成像是具有挑战性的产品,这是由于活性药物成分(API)的高颗粒密度、小颗粒尺寸以及相对于赋形剂物质的低浓度的API。然而,研究DPI是一项值得研究的挑战,因为欧洲(EMA,MHRA)和美国(US FDA)的监管机构已将评估微观结构的技术需求确定为建立创新产品和仿制药之间生物等效性的主要障碍。这为廉价仿制药的市场准入创造了障碍,并为医疗系统带来了经济优势。该项目的成果将是提供分析工具,以支持创新疗法的制造,特别关注微结构引导的产品工程。英国的几个研究中心已经成为转化开发和药物制造的世界领导者。微结构表征科学将为利用该研究中出现的数字产品建模工具开辟一条强有力的途径。我们研究的最终目标是利用配方微结构的早期识别,从开发开始就将可制造性设计到早期产品中,并加速扩大到临床供应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Darragh Murnane其他文献

Interaction of Formulation and Device Factors Determine the <em>In Vitro</em> Performance of Salbutamol Sulphate Dry Powders for Inhalation
  • DOI:
    10.1002/jps.24599
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joanna Muddle;Darragh Murnane;Irene Parisini;Marc Brown;Clive Page;Ben Forbes
  • 通讯作者:
    Ben Forbes
Mathematical approach for understanding deagglomeration behaviour of drug powder in formulations with coarse carrier
  • DOI:
    10.1016/j.ajps.2015.08.007
  • 发表时间:
    2015-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Irene Parisini;James L. Collett;Darragh Murnane
  • 通讯作者:
    Darragh Murnane
Thermoresponsive engineered emulsions stabilised with branched copolymer surfactants for nasal drug delivery of molecular therapeutics
用支化共聚物表面活性剂稳定的热响应性工程乳液用于分子治疗药物的鼻腔给药
  • DOI:
    10.1016/j.ijpharm.2025.125506
  • 发表时间:
    2025-05-15
  • 期刊:
  • 影响因子:
    5.200
  • 作者:
    Abhishek Rajbanshi;Eleanor Hilton;Emily Atkinson;James B. Phillips;Shiva Vanukuru;Vitaliy V. Khutoryanskiy;Adam Gibbons;Sabrina Falloon;Cecile A. Dreiss;Darragh Murnane;Michael T. Cook
  • 通讯作者:
    Michael T. Cook
Potential of a Cyclone Prototype Spacer to Improve In Vitro Dry Powder Delivery
  • DOI:
    10.1007/s11095-013-1236-8
  • 发表时间:
    2013-11-15
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Irene Parisini;Sean J. Cheng;Digby D. Symons;Darragh Murnane
  • 通讯作者:
    Darragh Murnane
Evidence for the existence of powder sub-populations in micronized materials: Aerodynamic size-fractions of aerosolized powders possess distinct physicochemical properties.
  • DOI:
    10.1007/s11095-014-1414-3
  • 发表时间:
    2014-07-12
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Sara Jaffari;Ben Forbes;Elizabeth Collins;Jiyi Khoo;Gary P Martin;Darragh Murnane
  • 通讯作者:
    Darragh Murnane

Darragh Murnane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Darragh Murnane', 18)}}的其他基金

Occoris - Self Activating Smart Inhaler
Occoris - 自激活智能吸入器
  • 批准号:
    EP/N510087/1
  • 财政年份:
    2016
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Research Grant
INFORM 2020 - Molecules to Manufacture: Processing and Formulation Engineering of Inhalable Nanoaggregates and Microparticles
INFORM 2020 - 制造分子:可吸入纳米聚集体和微粒的加工和配方工程
  • 批准号:
    EP/N025075/1
  • 财政年份:
    2016
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Standard Grant
CAREER: Cyberinfrastructure for Printable Multifunctional Microstructural Materials
职业:可打印多功能微结构材料的网络基础设施
  • 批准号:
    2339764
  • 财政年份:
    2024
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Standard Grant
Design of high fatigue strength ferrite-martensite steel based on microstructural control and strengthening mechanisms
基于显微组织控制和强化机制的高疲劳强度铁素体-马氏体钢设计
  • 批准号:
    22KJ1400
  • 财政年份:
    2023
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Microstructural Evolution during Superplastic Ice Creep
超塑性冰蠕变过程中的微观结构演化
  • 批准号:
    2317263
  • 财政年份:
    2023
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Continuing Grant
Magnetic resonance based quantitative assessment of myocardial microvascular and microstructural function using STEAM-tIVIM
使用 STEAM-tIVIM 基于磁共振的心肌微血管和微结构功能定量评估
  • 批准号:
    EP/X014010/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Research Grant
Microstructural imaging of the tumour microenvironment: towards virtual biopsy of prostate cancer
肿瘤微环境的微观结构成像:前列腺癌的虚拟活检
  • 批准号:
    2902117
  • 财政年份:
    2023
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Studentship
CAREER: Microstructural Engineering of Solid Composite Electrolytes through Process Manipulation
职业:通过工艺操纵进行固体复合电解质的微观结构工程
  • 批准号:
    2237878
  • 财政年份:
    2023
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Standard Grant
Microstructural Injury to the Brainstem and Spinal Cord Determines Outcomes in CM and SM
脑干和脊髓的微结构损伤决定 CM 和 SM 的结果
  • 批准号:
    10629123
  • 财政年份:
    2023
  • 资助金额:
    $ 19.21万
  • 项目类别:
Gibbs Energy Estimation of Amorphous Materials by Combining Microstructural Simulation and Machine Learning
结合微观结构模拟和机器学习的非晶材料吉布斯能量估计
  • 批准号:
    23KJ1094
  • 财政年份:
    2023
  • 资助金额:
    $ 19.21万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了