Cognitive Biases and Behavioural Segmentation in Food Demand
食品需求中的认知偏差和行为细分
基本信息
- 批准号:ES/K010166/1
- 负责人:
- 金额:$ 66.19万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study will consist of three parts.The first part of the study will segment consumers based on their preferences and consumption patterns using economic models of demand to facilitate better targeting of dietary interventions. Previous models of food demand have provided the average response of the population as a whole to changes in economic and demographic circumstances. Our work will extend previous models to recognise that food preferences differ between different individuals and, therefore, the notion of an average response to changing socio-economic circumstances may provide only limited insights into consumer response to dietary interventions. Our modelling approach will enable us to identify sub-groups within the population within which food choices and food preferences are similar. This part of the study will use data from the UK Government's Living Costs and Food Survey which covers a nationally representative sample of nearly 7000 UK households, stratified by Government Office Region and other socio-economic variables. The second part of the study will attempt to explain these preferences and consumption patterns based on factors influencing behaviours derived from social psychology and behavioural economics. It will explore how susceptible consumers within particular preference and food consumption clusters are to the range of "biases" influencing food choice (e.g., tolerance of risk, conformity to social norms, discount rates, impulsivity etc). This part of the study will use a questionnaire-based survey of 1000 UK households to explore the range of social and cognitive factors that explain the susceptibility to biases influencing food choice. It will provide insights into the design of dietary interventions relevant for different consumer segments. The study will facilitate the development of a suite of interventions that are appropriate for different consumer preferences and behavioural patterns. The study can be used to develop diagnostic or screening tools to identify the most appropriate interventions for different segments of consumers. The third part of the study will use these insights to develop experimental manipulations aimed at changing the behaviour of some of the key sub-groups based on their susceptibility to behavioural biases and associated food preference patterns. This will help in assessing the potential efficacy of dietary interventions based on behavioural economics insights.The project will assemble a unique dataset which brings together food purchase behaviour and the cognitive biases and social factors influencing food choice which will be very valuable for future interdisciplinary research on food choice behaviour.
这项研究将包括三个部分,第一部分将根据消费者的偏好和消费模式,利用需求经济模型对消费者进行分类,以便更好地确定饮食干预措施的目标。以前的粮食需求模型提供了整个人口对经济和人口情况变化的平均反应。我们的工作将扩展以前的模型,以认识到不同个体之间的食物偏好不同,因此,对不断变化的社会经济情况的平均反应的概念可能只提供有限的见解消费者对饮食干预的反应。我们的建模方法将使我们能够确定人口中的食物选择和食物偏好相似的子群体。这部分研究将使用英国政府生活成本和食品调查的数据,该调查涵盖了近7000个英国家庭的全国代表性样本,按政府办公区域和其他社会经济变量分层。研究报告的第二部分将试图根据社会心理学和行为经济学中影响行为的因素来解释这些偏好和消费模式。它将探讨特定偏好和食品消费群中的消费者对影响食品选择的“偏见”的敏感程度(例如,风险容忍度、对社会规范的遵从性、贴现率、冲动性等)。这部分研究将使用一个基于1000个英国家庭的调查,以探索一系列的社会和认知因素,解释影响食物选择的偏见的易感性。它将为不同消费者群体的饮食干预设计提供见解。这项研究将有助于制定一套适合不同消费者偏好和行为模式的干预措施。该研究可用于开发诊断或筛选工具,以确定针对不同消费者群体的最适当干预措施。研究的第三部分将利用这些见解来开发实验操作,旨在根据对行为偏见和相关食物偏好模式的敏感性来改变一些关键亚组的行为。这将有助于评估基于行为经济学见解的饮食干预措施的潜在功效。该项目将汇集一个独特的数据集,该数据集将食物购买行为与影响食物选择的认知偏见和社会因素结合在一起,这将对未来关于食物选择行为的跨学科研究非常有价值。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modelling preference heterogeneity using a Bayesian finite mixture of Almost Ideal Demand Systems
- DOI:10.1093/erae/jbz002
- 发表时间:2020-06
- 期刊:
- 影响因子:3.4
- 作者:Ariane Kehlbacher;C. Srinivasan;R. McCloy;R. Tiffin
- 通讯作者:Ariane Kehlbacher;C. Srinivasan;R. McCloy;R. Tiffin
The distributional and nutritional impacts and mitigation potential of emission-based food taxes in the UK
- DOI:10.1007/s10584-016-1673-6
- 发表时间:2016-07-01
- 期刊:
- 影响因子:4.8
- 作者:Kehlbacher, Ariane;Tiffin, Richard;Scarborough, Peter
- 通讯作者:Scarborough, Peter
Health impact assessment of the UK soft drinks industry levy: a comparative risk assessment modelling study.
- DOI:10.1016/s2468-2667(16)30037-8
- 发表时间:2017-01
- 期刊:
- 影响因子:0
- 作者:Briggs ADM;Mytton OT;Kehlbacher A;Tiffin R;Elhussein A;Rayner M;Jebb SA;Blakely T;Scarborough P
- 通讯作者:Scarborough P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Tiffin其他文献
Richard Tiffin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Tiffin', 18)}}的其他基金
FACCE-JPI Knowledge Hub: MACSUR-Partner 154
FACCE-JPI 知识中心:MACSUR-合作伙伴 154
- 批准号:
BB/N004930/1 - 财政年份:2015
- 资助金额:
$ 66.19万 - 项目类别:
Research Grant
FACCE-JPI Knowledge Hub: Overall Coordination
FACCE-JPI知识中心:整体协调
- 批准号:
BB/K010514/1 - 财政年份:2012
- 资助金额:
$ 66.19万 - 项目类别:
Research Grant
相似海外基金
CAREER: The Impact of Associations and Biases in Generative AI on Society
职业:生成人工智能中的关联和偏见对社会的影响
- 批准号:
2337877 - 财政年份:2024
- 资助金额:
$ 66.19万 - 项目类别:
Continuing Grant
CAREER: Accelerating Scientific Discovery via Deep Learning with Strong Physics Inductive Biases
职业:通过具有强物理归纳偏差的深度学习加速科学发现
- 批准号:
2338909 - 财政年份:2024
- 资助金额:
$ 66.19万 - 项目类别:
Continuing Grant
Making Better Decisions: An Investigation of Time-Biases
做出更好的决策:时间偏差的调查
- 批准号:
DP240100208 - 财政年份:2024
- 资助金额:
$ 66.19万 - 项目类别:
Discovery Projects
Constructing the decision environment from memory: how overweighting extreme events biases choice
从记忆构建决策环境:过度重视极端事件如何影响选择
- 批准号:
ES/T016639/2 - 财政年份:2023
- 资助金额:
$ 66.19万 - 项目类别:
Research Grant
Study of Human Statistical Biases on Unsupervised Parsing and Language Modeling
无监督句法分析和语言建模的人类统计偏差研究
- 批准号:
23KJ0565 - 财政年份:2023
- 资助金额:
$ 66.19万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Characterizing pervasive biases in genome-wide association study using family health history as proxy phenotypes
使用家族健康史作为代理表型来表征全基因组关联研究中普遍存在的偏差
- 批准号:
10799096 - 财政年份:2023
- 资助金额:
$ 66.19万 - 项目类别:
Neural Mechanisms of social biases
社会偏见的神经机制
- 批准号:
23K17640 - 财政年份:2023
- 资助金额:
$ 66.19万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A Platform for Identifying GlycoRNA and Identifying Biases in RNA Pulldown Experiments
用于识别 GlycoRNA 和识别 RNA Pulldown 实验中偏差的平台
- 批准号:
BB/X012883/1 - 财政年份:2023
- 资助金额:
$ 66.19万 - 项目类别:
Research Grant
SCH: Quantifying and mitigating demographic biases of machine learning in real world radiology
SCH:量化和减轻现实世界放射学中机器学习的人口统计偏差
- 批准号:
10818941 - 财政年份:2023
- 资助金额:
$ 66.19万 - 项目类别: