Economic Forecasting under Macroeconomic Uncertainty

宏观经济不确定性下的经济预测

基本信息

  • 批准号:
    ES/K010611/1
  • 负责人:
  • 金额:
    $ 41.2万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Macroeconomic forecasts are essential inputs in economic decisions such as the decision to invest in a new business project, buy a house, and change the policy interest rates. Macroeconomic forecasts are computed based on models able to capture regularity in past data, such that past economic history help us to anticipate the future values of output growth and inflation. Forecasting models are developed based on different assumptions about the economic structure and the statistical properties of the macroeconomic data. During the 00's, structural models called Dynamic Stochastic General Equilibrium (DSGE), estimated using Bayesian Econometrics techniques, became popular in central banks as a tool to deliver both macroeconomic forecasts and policy analysis. Their popularity was justified by rigorous theoretical background - built on micro-foundations - and by their ability to forecast output and inflation one- and two-years ahead. However, Del Negro and Schorfeide (2012) show the shortcomings of these models in predicting the drop in output observed in the 2008-2009 recession. In contrast, Stock and Watson (2012) argue that a statistical model, called Dynamic Factor Model, was able to capture the severe downturn observed in the United States in 2008-2009. Additional recent forecasting models proposed by the academic literature are: Bayesian Vector Autoregressions and Mixed Data Sampling Models. However, for these state-of-art models, little is known about their capabilities of forecasting under macroeconomic uncertainty. From the point of view of the economic decision maker, it is hard to ascertain if the most adequate set of forecasting models (or a model) is being used, considering the current economic climate. The main output of this research project is a paper evaluating the relative forecasting accuracy of state-of-art macroeconomic forecasting models, including their performance during the recent global downturn.
宏观经济预测是经济决策的基本输入,例如决定投资新商业项目、购买房屋和改变政策利率。宏观经济预测是基于能够捕捉过去数据规律性的模型来计算的,因此,过去的经济历史可以帮助我们预测产出增长和通货膨胀的未来值。预测模型是基于对经济结构和宏观经济数据的统计性质的不同假设而开发的。在20世纪90年代,被称为动态随机一般均衡(DSGE)的结构模型,使用贝叶斯计量经济学技术进行估计,在中央银行中流行起来,作为提供宏观经济预测和政策分析的工具。它们之所以受欢迎,是因为它们有严谨的理论背景(建立在微观基础之上),而且它们有能力预测未来一两年的产出和通胀。然而,Del Negro和Schorfeide(2012)显示了这些模型在预测2008-2009年经济衰退中观察到的产出下降方面的缺陷。相比之下,斯托克和沃森(2012)认为,一种称为动态因素模型的统计模型能够捕捉到2008-2009年在美国观察到的严重衰退。最近学术文献提出的其他预测模型有:贝叶斯向量自回归模型和混合数据抽样模型。然而,对于这些最先进的模型,人们对它们在宏观经济不确定性下的预测能力知之甚少。从经济决策者的角度来看,考虑到当前的经济气候,很难确定是否使用了最适当的一套预测模型(或一个模型)。本研究项目的主要成果是一篇论文,评估了目前最先进的宏观经济预测模型的相对预测精度,包括它们在最近全球经济衰退期间的表现。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
UK term structure decompositions at the zero lower bound
英国零下限的期限结构分解
Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility.
Common Drifting Volatility in Large Bayesian VARs
  • DOI:
    10.1080/07350015.2015.1040116
  • 发表时间:
    2016-07-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Carriero, Andrea;Clark, Todd E.;Marcellino, Massimiliano
  • 通讯作者:
    Marcellino, Massimiliano
Structural analysis with Multivariate Autoregressive Index models
使用多元自回归指数模型进行结构分析
  • DOI:
    10.1016/j.jeconom.2016.02.002
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Carriero A
  • 通讯作者:
    Carriero A
Measuring Uncertainty and Its Impact on the Economy
  • DOI:
    10.1162/rest_a_00693
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Carriero, Andrea;Clark, Todd E.;Marcellino, Massimiliano
  • 通讯作者:
    Marcellino, Massimiliano
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ana Galvao其他文献

Ana Galvao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: BoCP-Implementation: BioFI- Biodiversity Forecasting Initiative to Understand Population, Community and Ecosystem Function Under Global Change
合作研究:BoCP-实施:BioFI-生物多样性预测倡议,以了解全球变化下的人口、社区和生态系统功能
  • 批准号:
    2416164
  • 财政年份:
    2023
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: BioFI- Biodiversity Forecasting Initiative to Understand Population, Community and Ecosystem Function Under Global Change
合作研究:BoCP-实施:BioFI-生物多样性预测倡议,以了解全球变化下的人口、社区和生态系统功能
  • 批准号:
    2225076
  • 财政年份:
    2022
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: BioFI- Biodiversity Forecasting Initiative to Understand Population, Community and Ecosystem Function Under Global Change
合作研究:BoCP-实施:BioFI-生物多样性预测倡议,以了解全球变化下的人口、社区和生态系统功能
  • 批准号:
    2225077
  • 财政年份:
    2022
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: BioFI- Biodiversity Forecasting Initiative to Understand Population, Community and Ecosystem Function Under Global Change
合作研究:BoCP-实施:BioFI-生物多样性预测倡议,以了解全球变化下的人口、社区和生态系统功能
  • 批准号:
    2225079
  • 财政年份:
    2022
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: BioFI- Biodiversity Forecasting Initiative to Understand Population, Community and Ecosystem Function Under Global Change
合作研究:BoCP-实施:BioFI-生物多样性预测倡议,以了解全球变化下的人口、社区和生态系统功能
  • 批准号:
    2225078
  • 财政年份:
    2022
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Climate Smart Forecasting and Robust Optimization of Forest Management System under Uncertainty
不确定性下的气候智能预测与森林管理系统稳健优化
  • 批准号:
    RGPIN-2022-04855
  • 财政年份:
    2022
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Discovery Grants Program - Individual
Forecasting the consequences of insect- wildfire interactions on boreal forest resilience under climate change
预测气候变化下昆虫与野火相互作用对北方森林恢复力的影响
  • 批准号:
    RGPIN-2019-04078
  • 财政年份:
    2022
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Discovery Grants Program - Individual
Quantifying and forecasting tree mortality risks and uncertainties of Canadian boreal forests under a changing climate
量化和预测气候变化下加拿大北方森林的树木死亡风险和不确定性
  • 批准号:
    RGPIN-2019-06547
  • 财政年份:
    2022
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: BoCP-Implementation: BioFI- Biodiversity Forecasting Initiative to Understand Population, Community and Ecosystem Function Under Global Change
合作研究:BoCP-实施:BioFI-生物多样性预测倡议,以了解全球变化下的人口、社区和生态系统功能
  • 批准号:
    2243809
  • 财政年份:
    2022
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Standard Grant
Quantifying and forecasting tree mortality risks and uncertainties of Canadian boreal forests under a changing climate
量化和预测气候变化下加拿大北方森林的树木死亡风险和不确定性
  • 批准号:
    RGPIN-2019-06547
  • 财政年份:
    2021
  • 资助金额:
    $ 41.2万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了