Quantifying and forecasting tree mortality risks and uncertainties of Canadian boreal forests under a changing climate

量化和预测气候变化下加拿大北方森林的树木死亡风险和不确定性

基本信息

  • 批准号:
    RGPIN-2019-06547
  • 负责人:
  • 金额:
    $ 4.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Climate-induced tree mortality has emerged as a global concern that is expected to increase under the projections of future climate change. Canadian boreal forests, which occupy 77% of Canada's total forest land, play a critical role in the Earth's surface albedo and the global carbon budget. Recent studies suggested that Canadian boreal forests may be highly vulnerable to rapid increases in tree mortality due to warmer temperatures and more severe droughts and defoliation by spruce budworm. Forecasting the potential impacts of increasing tree mortality on carbon budgets requires both local and regional scale. These impacts, however, have generally been ignored in large-scale carbon cycle modeling studies because data on tree mortality over large areas are expensive to collect, and therefore not widely available. There is an urgent need to develop a better scientific understanding and to quantify and forecasting the impacts of future climate change and associated insect disturbances on boreal forest ecosystems in Canada, including ecosystem productivity, tree mortality and changes in the timing and magnitude of fluxes between the land and the atmosphere. To my knowledge, no comparable studies on changes in tree mortality rates have been conducted in boreal forests using a model-data fusion (MDF) approach which integrates observed forest plots and remote sensing data with climate data and a process-based forest model in Canada. The central objective of this 5 year research program is to develop and use state-of-the-art of TRIPLEX-mortality to 1) better understand and predict forest growth, mortality and biomass carbon; and 2) quantify and reduce risks and uncertainties by using new model-data fusion approach on the loss of forest growing stock and biomass carbon due to tree mortality in the face of climate change. Our approach will provide a powerful and tractable way of incorporating tree mortality into forest models to reduce uncertainty over the fate of Canadian boreal forest ecosystems in a changing climate. The present research program will focus on the boreal forests of eastern Canada. This work will fill in our knowledge gaps in the area of the direct effects of climate change on tree mortality, biomass, and carbon balance of Canada's boreal forests. This study will pave the way for better quantifying and forecasting drought and insect impacts and better understanding of how climate change will alter Earth's forests in the 21st century. The knowledge gained from this research will be transferred to forest managers, industry partners and policy makers. This Discovery program will contribute to the training of 15 highly qualified personnel (10 undergraduates, 2 MSc, 2 PhDs and 1 post-doctorate) in the areas of forest growth, mortality, remote sensing, climate change and biomass/carbon relationships.
气候引起的树木死亡已经成为一个全球关注的问题,根据对未来气候变化的预测,预计这种担忧将会增加。加拿大北方森林占据了加拿大总林地的77%,在地球表面反照率和全球碳收支中发挥着关键作用。最近的研究表明,由于气温上升和更严重的干旱以及云杉芽孢子虫的落叶,加拿大北方森林可能非常容易受到树木死亡率快速上升的影响。预测树木死亡率增加对碳预算的潜在影响需要地方和区域两个尺度。然而,在大规模的碳循环模拟研究中,这些影响通常被忽视,因为关于大面积树木死亡的数据收集起来成本很高,因此不能广泛获得。迫切需要建立更好的科学认识,量化和预测未来气候变化和相关昆虫干扰对加拿大北方森林生态系统的影响,包括生态系统生产力、树木死亡以及陆地和大气之间通量的时间和大小的变化。据我所知,在加拿大,还没有使用模型-数据融合(MDF)方法对树木死亡率的变化进行比较研究,MDF方法将观测到的林地和遥感数据与气候数据和基于过程的森林模型相结合。这项为期5年的研究计划的中心目标是开发和使用最新的三重死亡率,以1)更好地了解和预测森林生长、死亡率和生物质碳;以及2)通过使用新的模型-数据融合方法量化和减少风险和不确定性,这些风险和不确定性是关于面对气候变化时树木死亡造成的森林蓄积量和生物质碳的损失。我们的方法将提供一种强大和易处理的方式,将树木死亡率纳入森林模型,以减少在不断变化的气候中加拿大北方森林生态系统命运的不确定性。目前的研究计划将集中在加拿大东部的北方森林。这项工作将填补我们在气候变化对加拿大北部森林的树木死亡、生物量和碳平衡的直接影响领域的知识空白。这项研究将为更好地量化和预测干旱和昆虫的影响以及更好地理解气候变化将如何改变21世纪的地球森林铺平道路。从这项研究中获得的知识将转移给森林管理者、行业合作伙伴和政策制定者。该探索计划将帮助培训15名高素质的人员(10名本科生、2名硕士、2名博士和1名博士后),涉及森林生长、死亡率、遥感、气候变化和生物量/碳关系等领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peng, Changhui其他文献

An early warning signal for grassland degradation on the Qinghai-Tibetan Plateau.
  • DOI:
    10.1038/s41467-023-42099-4
  • 发表时间:
    2023-10-12
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Zhu, Qiuan;Chen, Huai;Peng, Changhui;Liu, Jinxun;Piao, Shilong;He, Jin-Sheng;Wang, Shiping;Zhao, Xinquan;Zhang, Jiang;Fang, Xiuqin;Jin, Jiaxin;Yang, Qi-En;Ren, Liliang;Wang, Yanfen
  • 通讯作者:
    Wang, Yanfen
Observed high and persistent carbon uptake by Moso bamboo forests and its response to environmental drivers
观察到的毛竹林高且持续的碳吸收及其对环境驱动因素的响应
  • DOI:
    10.1016/j.agrformet.2017.09.001
  • 发表时间:
    2017-12-15
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Song, Xinzhang;Chen, Xiaofeng;Peng, Changhui
  • 通讯作者:
    Peng, Changhui
Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo (Phyllostachys edulis) plantations under simulated nitrogen deposition
模拟氮沉降下,生物炭改良剂降低了毛竹人工林的土壤微生物生物量并增加了细菌多样性
  • DOI:
    10.1088/1748-9326/aab53a
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Li, Quan;Lei, Zhaofeng;Peng, Changhui
  • 通讯作者:
    Peng, Changhui
Warming-induced global soil carbon loss attenuated by downward carbon movement
  • DOI:
    10.1111/gcb.15370
  • 发表时间:
    2020-10-23
  • 期刊:
  • 影响因子:
    11.6
  • 作者:
    Luo, Zhongkui;Luo, Yiqi;Peng, Changhui
  • 通讯作者:
    Peng, Changhui
Positive responses of belowground C dynamics to nitrogen enrichment in China
  • DOI:
    10.1016/j.scitotenv.2017.10.215
  • 发表时间:
    2018-03-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Deng, Lei;Peng, Changhui;Shangguan, Zhouping
  • 通讯作者:
    Shangguan, Zhouping

Peng, Changhui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peng, Changhui', 18)}}的其他基金

Quantifying and forecasting tree mortality risks and uncertainties of Canadian boreal forests under a changing climate
量化和预测气候变化下加拿大北方森林的树木死亡风险和不确定性
  • 批准号:
    RGPIN-2019-06547
  • 财政年份:
    2022
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Discovery Grants Program - Individual
Quantifying and forecasting tree mortality risks and uncertainties of Canadian boreal forests under a changing climate
量化和预测气候变化下加拿大北方森林的树木死亡风险和不确定性
  • 批准号:
    RGPIN-2019-06547
  • 财政年份:
    2020
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Discovery Grants Program - Individual
Quantifying and forecasting tree mortality risks and uncertainties of Canadian boreal forests under a changing climate
量化和预测气候变化下加拿大北方森林的树木死亡风险和不确定性
  • 批准号:
    RGPIN-2019-06547
  • 财政年份:
    2019
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding, Quantifying, and Predicting Greenhouse Gas Emissions and Budgets of Forest Soils under a Changing Climate in Canada
了解、量化和预测加拿大气候变化下森林土壤的温室气体排放和预算
  • 批准号:
    RGPIN-2014-04433
  • 财政年份:
    2018
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding, Quantifying, and Predicting Greenhouse Gas Emissions and Budgets of Forest Soils under a Changing Climate in Canada
了解、量化和预测加拿大气候变化下森林土壤的温室气体排放和预算
  • 批准号:
    RGPIN-2014-04433
  • 财政年份:
    2017
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding, Quantifying, and Predicting Greenhouse Gas Emissions and Budgets of Forest Soils under a Changing Climate in Canada
了解、量化和预测加拿大气候变化下森林土壤的温室气体排放和预算
  • 批准号:
    RGPIN-2014-04433
  • 财政年份:
    2016
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding, Quantifying, and Predicting Greenhouse Gas Emissions and Budgets of Forest Soils under a Changing Climate in Canada
了解、量化和预测加拿大气候变化下森林土壤的温室气体排放和预算
  • 批准号:
    RGPIN-2014-04433
  • 财政年份:
    2015
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding, Quantifying, and Predicting Greenhouse Gas Emissions and Budgets of Forest Soils under a Changing Climate in Canada
了解、量化和预测加拿大气候变化下森林土壤的温室气体排放和预算
  • 批准号:
    RGPIN-2014-04433
  • 财政年份:
    2014
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding and predicting boreal forest growth and yield, timber supply, and carbon budget under a changing climate in Eastern Canada
了解和预测加拿大东部气候变化下的北方森林生长和产量、木材供应和碳预算
  • 批准号:
    283108-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding and predicting boreal forest growth and yield, timber supply, and carbon budget under a changing climate in Eastern Canada
了解和预测加拿大东部气候变化下的北方森林生长和产量、木材供应和碳预算
  • 批准号:
    283108-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

MULTI-STRESS: Quantifying the impacts of multiple stressors in multiple dimensions to improve ecological forecasting
多重压力:在多个维度量化多种压力源的影响,以改进生态预测
  • 批准号:
    NE/Z000130/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Research Grant
LTREB: Integrating real-time open data pipelines and forecasting to quantify ecosystem predictability at day to decadal scales
LTREB:集成实时开放数据管道和预测,以量化每日到十年尺度的生态系统可预测性
  • 批准号:
    2327030
  • 财政年份:
    2024
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Continuing Grant
Solar Forecasting And Future Sustainable Power Systems
太阳能预测和未来可持续电力系统
  • 批准号:
    2908163
  • 财政年份:
    2024
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Studentship
Cross-scale forecasting of Everglades wading bird dynamics
大沼泽地涉水鸟动态的跨尺度预测
  • 批准号:
    2326954
  • 财政年份:
    2024
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Continuing Grant
Towards the next generation probabilistic flood forecasting system for the UK
英国下一代概率洪水预报系统
  • 批准号:
    2907694
  • 财政年份:
    2024
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Studentship
SBIR Phase I: Subseasonal Forecasting and Climate Risk Analytics Combining Physics and AI
SBIR 第一阶段:结合物理和人工智能的次季节预报和气候风险分析
  • 批准号:
    2335210
  • 财政年份:
    2024
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Standard Grant
Water IMPACT: Water emissions forecasting tool to Introduce the Modelling Potential of water quality Actions to reach Climate-change Targets
水影响:水排放预测工具,介绍水质建模潜力 实现气候变化目标的行动
  • 批准号:
    10103499
  • 财政年份:
    2024
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Collaborative R&D
Integrating and scaling seasonal climate-driven dengue forecasting
整合和扩展季节性气候驱动的登革热预测
  • 批准号:
    MR/Y004663/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Research Grant
Solar forecasting and future sustainable power systems
太阳能预测和未来可持续电力系统
  • 批准号:
    2905679
  • 财政年份:
    2024
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Studentship
EAGER: IMPRESS-U: Modeling and Forecasting of Infection Spread in War and Post War Settings Using Epidemiological, Behavioral and Genomic Surveillance Data
EAGER:IMPRESS-U:使用流行病学、行为和基因组监测数据对战争和战后环境中的感染传播进行建模和预测
  • 批准号:
    2412914
  • 财政年份:
    2024
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了