Understanding and Explaining Management Practices to Promote Higher Productivity in UK Businesses

理解和解释提高英国企业生产力的管理实践

基本信息

项目摘要

Our Management and Expectations Survey (MES), cited in the ESRC call, arose from a partnership between the ONS and ESCoE: it is the largest ever survey of UK management capabilities, executed on a population of 25,000 firms across industries, regions, firm sizes and ages documenting the variable quality of management practices across UK businesses. Our analysis found a significant relationship between management practices and labour productivity amongst UK firms, and examined whether certain types of firms have poor management practices and stagnant productivity, drawing conclusions about the links between them, ONS (2018). This team, with two seminal contributors to management practice and performance (Bloom, Stanford, and Van Reenen, MIT) who initiated the World Management Survey, partners from the ONS (Awano, Dolby, Vyas, Wales), and the Director and Fellows of the ESCoE (Riley, Mizen, Senga, Sleeman) at the NIESR, will investigate five issues:1. Longitudinal changes in management practices and performanceThe initial MES offers a cross section of variation in management practices and expectations between firms, but it does not explore variations within businesses through time due to the missing longitudinal dimension to the data. A second wave of the MES will expand our scope of analysis so that we can interpret how management practices in the UK have varied over time. This extension addresses the 'broad consensus' from the recent ESRC-ONS workshop that 'there is not enough longitudinal data around productivity that allows for consistent, ongoing analysis, and in particular data that enables researchers to identify, isolate and accurately measure changes over time.' 2. International comparisonsDrawing on our links through Bloom and Van Reenen with the US Management and Organizational Practices Survey (MOPS) at the US Census Bureau will enable us to i) test identical hypotheses using their methods and variables to draw research insights that help identify causal drivers of productivity at the firm level, and compare and contrast the UK and US data; ii) draw together a unique joint ONS-Census Bureau methodological forum for collecting the most useful micro-data for measuring management, investment and hiring intentions for UK and US firms. Similar data collection exercises have been taking place across other countries. We have established links with German and Japanese teams and we intend to discuss key differences, e.g. between the US and European business environments, and similarities, e.g. the Japanese experience of low productivity. 3. Analysis of linked business surveys and administrative data Partnership between academic researchers and ONS facilitates the matching of data from other sources to answer key questions around: a) management and firms' ability to cope with uncertainty by linking MES responses to trade data, administrative data on VAT, R&D expenditure, and patenting data, and exploiting variation across firms in exposure to EU markets through supply chains and export destination of goods; b) evidence of superior innovation, R&D and export performance from evidence of how business innovation and exporting varies across firms and over time in response to management practices and cultures. This will directly inform practical lessons for UK businesses.4. Experimental analysis using big dataWe will use natural language processing and machine learning to investigate big data from job-search companies to objectively identify the factors that affect staff satisfaction and performance in the UK. Matching to the MES and other micro datasets we will examine links between mental health and management practices.5. Randomised control trialsNearly 9,000 responding businesses in the MES sought 'feedback' on their management score. By varying feedback to respondents we will observe in collaboration with BIT (the 'Nudge Unit') and CMI the impact on firm's subsequent adaptation and performance.
我们的管理和期望调查(MES),在ESRC电话中引用,来自ONS和ESCOE之间的合作伙伴关系:这是有史以来最大的英国管理能力调查,对25,000家公司的人口进行了调查,这些公司来自不同行业,地区,公司规模和年龄,记录了英国企业管理实践的可变质量。我们的分析发现,英国企业的管理实践与劳动生产率之间存在显着关系,并研究了某些类型的企业是否存在管理实践不善和生产率停滞的问题,并得出了关于它们之间联系的结论。这个团队由两位对管理实践和绩效有着重要贡献的人(斯坦福大学的Bloom和麻省理工学院的货车Reenen)组成,他们发起了世界管理调查,来自ONS的合作伙伴(Awano,Dolby,Vyas,Wales),以及NIESR的ESCOE主任和研究员(Riley,Mizen,Senga,Sleeman),将调查五个问题:1.管理实践和绩效的纵向变化最初的MES提供了企业之间管理实践和期望变化的横截面,但由于数据缺少纵向维度,它没有探索企业内部的变化。MES的第二波将扩大我们的分析范围,以便我们能够解释英国的管理实践如何随时间而变化。该扩展解决了最近ESRC-ONS研讨会的“广泛共识”,即“没有足够的关于生产力的纵向数据,可以进行一致的持续分析,特别是使研究人员能够识别,隔离和准确测量随时间变化的数据。' 2.国际比较利用我们通过Bloom和货车Reenen与美国人口普查局的美国管理和组织实践调查(MOPS)的联系,将使我们能够i)使用他们的方法和变量来测试相同的假设,以得出有助于确定企业层面生产率因果驱动因素的研究见解,并比较和对比英国和美国的数据; ii)建立一个独特的英国国家统计局-人口普查局联合方法论坛,收集最有用的微观数据,以衡量英国和美国公司的管理、投资和招聘意向。其他国家也在开展类似的数据收集工作。我们已经与德国和日本的团队建立了联系,我们打算讨论主要的差异,例如美国和欧洲的商业环境,以及相似之处,例如日本的低生产率经验。3.分析关联的商业调查和行政数据学术研究人员与国家统计局之间的合作有助于匹配其他来源的数据,以回答以下关键问题:a)管理层和企业通过将MES响应与贸易数据、增值税行政数据、研发支出和专利数据联系起来来科普不确定性的能力,通过供应链和货物出口目的地,利用企业在欧盟市场上的差异; B)上级创新的证据,R& D和出口业绩的证据,说明企业创新和出口如何随着时间的推移而在不同企业之间变化,以应对管理做法和文化。这将直接为英国企业提供实践经验。4.使用大数据进行实验分析我们将使用自然语言处理和机器学习来调查求职公司的大数据,以客观地确定影响英国员工满意度和绩效的因素。与MES和其他微数据集相匹配,我们将研究心理健康和管理实践之间的联系。随机对照试验在MES中,近9,000家做出回应的企业寻求对其管理得分的“反馈”。通过对受访者的不同反馈,我们将与BIT(“推动单元”)和CMI合作,观察对公司随后的适应和业绩的影响。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Channels of Managerial Capital Accumulation - A Framework and New Evidence from UK Microdata
管理资本积累的渠道——来自英国微观数据的框架和新证据
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ardanaz-Badia, A.
  • 通讯作者:
    Ardanaz-Badia, A.
Turbulence, Firm Decentralization, and Growth in Bad Times
动荡、公司权力下放和困难时期的增长
  • DOI:
    10.1257/app.20180752
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Aghion P
  • 通讯作者:
    Aghion P
Management practices, homeworking and productivity during the coronavirus (COVID-19) pandemic, 17 May 2021
冠状病毒 (COVID-19) 大流行期间的管理实践、家庭作业和生产力,2021 年 5 月 17 日
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Schneebacher J
  • 通讯作者:
    Schneebacher J
Measuring business-level expectations and uncertainty: survey evidence and the COVID-19 pandemic.
衡量业务级别的期望和不确定性:调查证据和COVID-19大流行。
Healthy Business? Managerial Education and Management in Health Care
  • DOI:
    10.1162/rest_a_00847
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Bloom, Nicholas;Lemos, Renata;Van Reenen, John
  • 通讯作者:
    Van Reenen, John
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rebecca Riley其他文献

Below the Aggregate: A Sectoral Account of the UK Productivity Puzzle
总体之下:英国生产力之谜的部门解释
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rebecca Riley;Ana Rincón;L. Samek
  • 通讯作者:
    L. Samek
Does welfare-to-work policy increase employment?: Evidence from the UK New Deal for Young People
福利转工作政策会增加就业吗?:来自英国年轻人新政的证据
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rebecca Riley;G. Young
  • 通讯作者:
    G. Young
A Re‐Examination of the Impact of the UK National Minimum Wage on Employment
重新审视英国国家最低工资对就业的影响
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard R Dickens;Rebecca Riley;D. Wilkinson
  • 通讯作者:
    D. Wilkinson
Recent UK Growth: A Comparison with France, Germany and the US
英国近期增长:与法国、德国和美国的比较
  • DOI:
    10.1177/00279501041871005
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    R. Barrell;R. Metz;Rebecca Riley
  • 通讯作者:
    Rebecca Riley
Productivity measurement: Reassessing the production function from micro to macro
生产力衡量:从微观到宏观重新评估生产函数
  • DOI:
    10.1111/joes.12615
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Josh Martin;Rebecca Riley
  • 通讯作者:
    Rebecca Riley

Rebecca Riley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rebecca Riley', 18)}}的其他基金

Understanding and Explaining Management Practices to Promote Higher Productivity in UK Businesses
理解和解释提高英国企业生产力的管理实践
  • 批准号:
    ES/S012729/2
  • 财政年份:
    2021
  • 资助金额:
    $ 123.86万
  • 项目类别:
    Research Grant
The Impact of the Financial Crisis on UK Company Performance
金融危机对英国公司业绩的影响
  • 批准号:
    ES/K00378X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 123.86万
  • 项目类别:
    Research Grant

相似海外基金

A Principled Framework for Explaining, Choosing and Negotiating Privacy Parameters of Differential Privacy
解释、选择和协商差异隐私的隐私参数的原则框架
  • 批准号:
    23K24851
  • 财政年份:
    2024
  • 资助金额:
    $ 123.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Explaining virus diversity
解释病毒多样性
  • 批准号:
    DP240101313
  • 财政年份:
    2024
  • 资助金额:
    $ 123.86万
  • 项目类别:
    Discovery Projects
A framework for evaluating and explaining the robustness of NLP models
评估和解释 NLP 模型稳健性的框架
  • 批准号:
    EP/X04162X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 123.86万
  • 项目类别:
    Research Grant
Explaining the Destruction of Monumental Architecture
解释纪念性建筑的破坏
  • 批准号:
    2401213
  • 财政年份:
    2023
  • 资助金额:
    $ 123.86万
  • 项目类别:
    Standard Grant
A postcode lottery of SEND provision? Analysing and explaining variability in the education of children with SEND since the Children and Families Act
SEND 规定的邮政编码抽奖?
  • 批准号:
    ES/X001431/1
  • 财政年份:
    2023
  • 资助金额:
    $ 123.86万
  • 项目类别:
    Research Grant
Explaining "Unexplained" Grade Inflation in the UK's Universities
解释英国大学“无法解释的”成绩膨胀
  • 批准号:
    ES/X006883/1
  • 财政年份:
    2023
  • 资助金额:
    $ 123.86万
  • 项目类别:
    Research Grant
Assessing and explaining the per unit costs of non-native plant species
评估和解释非本地植物物种的单位成本
  • 批准号:
    2902328
  • 财政年份:
    2023
  • 资助金额:
    $ 123.86万
  • 项目类别:
    Studentship
Explaining the norm formation process of "sustainable development" : research projects using cSIMINSOC games
解释“可持续发展”的规范形成过程:使用cSIMINSOC游戏的研究项目
  • 批准号:
    23H01030
  • 财政年份:
    2023
  • 资助金额:
    $ 123.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Explaining automated test agents and their test results
解释自动化测试代理及其测试结果
  • 批准号:
    23K11062
  • 财政年份:
    2023
  • 资助金额:
    $ 123.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF-BSF: Explaining the Mismatch of Experiments and Simulations for Viscoelastic Flows
NSF-BSF:解释粘弹性流实验与模拟的不匹配
  • 批准号:
    2246791
  • 财政年份:
    2023
  • 资助金额:
    $ 123.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了