A Computational Approach to Understanding Maladaptive Cognition in Depression
理解抑郁症适应不良认知的计算方法
基本信息
- 批准号:ES/S015922/1
- 负责人:
- 金额:$ 30.14万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CONTEXTDepression is the single leading cause of disability worldwide and a major public health problem. Even with the best treatments, around 30% of patients remain unwell, demonstrating the importance of improving our understanding of depression. Decades of research in clinical psychology suggests that vulnerability to depression is associated with negative cognitive styles, such as attributing negative events to stable and global causes, often blaming oneself, and maladaptive metacognitive beliefs (about one's own cognitive processes), such as low self-confidence. These biases are a focus of psychological therapies such as cognitive behavioural therapy (CBT), but the assessment of maladaptive depressive cognition is limited by imprecise measurement, relying on introspection and self-report. AIMS AND OBJECTIVESThis project aims to improve our understanding of the maladaptive cognitions driving depressive symptoms. To gain a more mechanistic understanding of the neurocognitive bases of (mal)adaptive cognition, we will leverage computational models of behaviour. This overarching goal will be achieved by conceptualising maladaptive depressive cognition as maladaptive attributions. To test this we will measure: (a) biases in the attribution of positive and negative events to the self vs. external causes; (b) biases in the metacognitive evaluations of decision confidence and their potential misattribution to action-outcome learning.Using cutting-edge analysis methods, across online, clinical, and neuroimaging studies, this project will achieve the following objectives: 1. Clarify the neurocognitive mechanisms underlying adaptive attribution (of external events and of metacognitive signals), in healthy participants. 2. Identify behavioural markers of maladaptive attribution related to depressive symptoms in a non-clinical sample. 3. Test the specificity of markers of maladaptive attribution to depressive symptoms, relative to other common mental health problems. 4. Test the clinical relevance of markers of maladaptive attribution.POTENTIAL APPLICATIONS AND BENEFITSImproving our understanding of the mechanisms that drive maladaptive cognition in depression, and underpin attributional processes in healthy participants, will constitute an important scientific contribution to the fields of clinical psychology and cognitive and computational neuroscience. Given the high societal cost of depression, this research is of high societal and clinical relevance. Disseminating our findings to the wider society will demonstrate how a better understanding of basic cognitive processes may translate to understanding everyday behaviour. Presenting our project and findings to people with mental health problems, including service users, will allow receiving their feedback on our experimental designs and findings, and help broaden the perspective for future research. The work will also be regularly disseminated to academic audiences, through publications and conferences, across the fields of psychology, neuroscience, and mental health. Engaging with clinical experts, by organising an interdisciplinary workshop, will help increase our clinical impact, establish novel collaborations, and receive expert feedback. Identifying behavioural and neural markers related to maladaptive cognition in depression offers a unique opportunity to develop novel tools that may subsequently help to refine differential diagnosis and improve treatment selection, as well as provide a foundation for the development of novel psychological interventions.
抑郁症是世界范围内导致残疾的唯一主要原因,也是一个主要的公共卫生问题。即使采用最好的治疗方法,仍有大约30%的患者身体不适,这表明提高我们对抑郁症的理解的重要性。数十年的临床心理学研究表明,易患抑郁症与消极的认知方式有关,比如将消极事件归因于稳定的和全球性的原因,经常责备自己,以及适应不良的元认知信念(关于自己的认知过程),比如缺乏自信。这些偏差是认知行为疗法(CBT)等心理治疗的焦点,但对适应不良抑郁症认知的评估受到不精确测量的限制,依赖于内省和自我报告。目的与目的本项目旨在提高我们对导致抑郁症状的不适应认知的理解。为了获得对(不良)适应性认知的神经认知基础的更机械的理解,我们将利用行为的计算模型。这一总体目标将通过将适应不良抑郁认知概念化为适应不良归因来实现。为了验证这一点,我们将测量:(a)将积极和消极事件归因于自我与外部原因的偏差;(b)决策自信元认知评价中的偏差及其对行动-结果学习的潜在错误归因。利用前沿的分析方法,跨越在线、临床和神经影像学研究,本项目将实现以下目标:阐明健康参与者适应性归因(外部事件和元认知信号)的神经认知机制。2. 在非临床样本中识别与抑郁症状相关的适应不良归因的行为标记。3. 相对于其他常见的心理健康问题,测试适应不良归因于抑郁症状的标记的特异性。4. 检验适应不良归因标记的临床相关性。潜在的应用和益处提高我们对抑郁症中导致适应不良认知的机制的理解,并支持健康参与者的归因过程,将对临床心理学、认知和计算神经科学领域做出重要的科学贡献。鉴于抑郁症的高社会成本,本研究具有很高的社会和临床相关性。将我们的发现传播到更广泛的社会将证明对基本认知过程的更好理解如何转化为对日常行为的理解。向有心理健康问题的人(包括服务使用者)展示我们的项目和研究结果,可以让他们对我们的实验设计和研究结果获得反馈,并有助于拓宽未来研究的视角。这项工作还将通过出版物和会议定期向心理学、神经科学和心理健康领域的学术受众传播。通过组织跨学科研讨会,与临床专家合作,将有助于提高我们的临床影响,建立新的合作关系,并获得专家反馈。识别与抑郁症中适应性认知不良相关的行为和神经标记为开发新的工具提供了一个独特的机会,这些工具可能随后有助于改进鉴别诊断和改善治疗选择,并为开发新的心理干预措施提供基础。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimising the measurement of anxious-depressive, compulsivity and intrusive thought and social withdrawal transdiagnostic symptom dimensions
优化焦虑抑郁、强迫性和侵入性思维以及社交退缩跨诊断症状维度的测量
- DOI:10.31234/osf.io/q83sh
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hopkins A
- 通讯作者:Hopkins A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nura Sidarus其他文献
Influences of unconscious priming on voluntary actions: Role of the rostral cingulate zone
无意识启动对自愿行为的影响:吻侧扣带区的作用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:5.7
- 作者:
Martyn Teuchies;Jelle Demanet;Nura Sidarus;P. Haggard;Michaël A. Stevens;M. Brass - 通讯作者:
M. Brass
Susceptibility of agency judgments to social influence
机构判断对社会影响的敏感性
- DOI:
10.31219/osf.io/5ea74 - 发表时间:
2021 - 期刊:
- 影响因子:3.4
- 作者:
A. Baptista;P. Jacquet;Nura Sidarus;David Cohen;V. Chambon - 通讯作者:
V. Chambon
Priming of actions increases sense of control over unexpected outcomes
行动的启动增强了对意外结果的控制感
- DOI:
10.1016/j.concog.2013.09.008 - 发表时间:
2013 - 期刊:
- 影响因子:2.4
- 作者:
Nura Sidarus;V. Chambon;P. Haggard - 通讯作者:
P. Haggard
Cost-benefit trade-offs in decision-making and learning
决策和学习中的成本效益权衡
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Nura Sidarus;Stefano Palminteri;V. Chambon - 通讯作者:
V. Chambon
Trading off the cost of conflict against expected rewards
权衡冲突成本与预期回报
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Nura Sidarus;Stefano Palminteri;V. Chambon - 通讯作者:
V. Chambon
Nura Sidarus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
Computational approach to security dilemma: understanding state rivalry through multilingual longitudinal analysis of foreign news
解决安全困境的计算方法:通过外国新闻的多语言纵向分析来理解国家竞争
- 批准号:
23K25490 - 财政年份:2024
- 资助金额:
$ 30.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant
Computational approach to security dilemma: understanding state rivalry through multilingual longitudinal analysis of foreign news
解决安全困境的计算方法:通过外国新闻的多语言纵向分析来理解国家竞争
- 批准号:
23H00793 - 财政年份:2023
- 资助金额:
$ 30.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2328533 - 财政年份:2023
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148646 - 财政年份:2023
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: SPRF: Taking a Computational Approach to Understanding Schema-Memory Interactions
博士后奖学金:SPRF:采用计算方法来理解模式内存交互
- 批准号:
2313703 - 财政年份:2023
- 资助金额:
$ 30.14万 - 项目类别:
Fellowship Award
Understanding eye movements in skilled readers and novice readers: A behavioral and computational approach
了解熟练读者和新手读者的眼球运动:行为和计算方法
- 批准号:
2141268 - 财政年份:2022
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant
An atomic scale computational approach to understanding REDOX speciation of uranium on iron bearing minerals
用于了解含铁矿物上铀的氧化还原形态的原子尺度计算方法
- 批准号:
2602864 - 财政年份:2021
- 资助金额:
$ 30.14万 - 项目类别:
Studentship
Schooling through Vortex Streets; A Biological and Computational Approach to Understanding Collective Behavior in Wild Fish
通过涡街 (Vortex Street) 上学;
- 批准号:
2102891 - 财政年份:2021
- 资助金额:
$ 30.14万 - 项目类别:
Continuing Grant
CAREER: Understanding the Corrosion Fatigue Behavior of Additively Processed Metals through an Integrated Experimental and Computational Approach
职业:通过综合实验和计算方法了解增材加工金属的腐蚀疲劳行为
- 批准号:
2044972 - 财政年份:2021
- 资助金额:
$ 30.14万 - 项目类别:
Standard Grant