Theoretical Sampling Design Options for a New Birth Cohort

新生儿队列的理论抽样设计选项

基本信息

  • 批准号:
    ES/T001224/1
  • 负责人:
  • 金额:
    $ 11.19万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The 2017 Longitudinal Studies Strategic Review (Davis-Kean, Chambers, Davidson, Kleinert, Ren and Tang, 2018) made a series of recommendations on innovative ways to enhance and to invest in opportunities for longitudinal research in the UK. One of the key recommendations to the ESRC was to commission a new birth cohort with an accelerated longitudinal design. The accelerated longitudinal design engages multiple cohorts simultaneously, each one starting at a different age and then following a 'suite' of aligned cohort groupings over time. In this proposal we investigate high-level design options and feasibility for an accelerated longitudinal design in the UK for a cohort of individuals starting soon after birth and a second or multiple cohorts starting in childhood and following each one over time, at least to age 18. The 2017 Longitudinal Studies Strategic Review mentions 'pivotal age periods (to be determined)'. Given the aim of sampling from an 'administrative spine' which in practice does not exist, we can assume that one age point would be 0, e.g. from the registry of births. Another key administrative source for children is the School Census and it is natural to take the age of 5 (the start of compulsory schooling) as an additional age point. A third age point could be the age of 16 (the end of compulsory schooling). We note that the issue of following a cohort during pregnancy may be problematic due to a lack of a sampling frame. More specifically, we investigate theoretical aspects of an accelerated longitudinal design versus a traditional single cohort with respect to: statistical power and precision of estimates to be able to examine key research questions; consideration of geographical aspects and adequate sample sizes at the UK national and regional level and in vulnerable subgroups (including booster sampling); statistical analysis under multiple cohorts; comparability of measures across cohorts and across sweeps; missing data and attrition.
2017年纵向研究战略审查(戴维斯-基恩,钱伯斯,戴维森,克莱纳特,任和唐,2018年)提出了一系列关于创新方法的建议,以加强和投资于英国纵向研究的机会。向ESRC提出的关键建议之一是委托采用加速纵向设计的新出生队列。加速纵向设计同时涉及多个队列,每个队列从不同的年龄开始,然后随着时间的推移遵循“一套”对齐的队列分组。在这项提案中,我们调查了高层次的设计选项和可行性,在英国加速纵向设计的一个队列的个人出生后不久开始,第二个或多个队列开始在童年和以下每一个随着时间的推移,至少到18岁。2017年《纵向研究战略评论》提到了“关键年龄段(待定)”。鉴于从实际上并不存在的“行政脊柱”中取样的目的,我们可以假设一个年龄点是0,例如从出生登记处。儿童的另一个重要行政来源是学校普查,自然将5岁(义务教育开始)作为一个额外的年龄点。第三个年龄点可以是16岁(义务教育结束)。我们注意到,由于缺乏抽样框架,在怀孕期间跟踪队列的问题可能会有问题。更具体地说,我们研究了加速纵向设计与传统单一队列的理论方面:统计功效和估计精度,以便能够检查关键研究问题;考虑地理因素以及英国国家和地区层面以及弱势亚组的足够样本量(包括加强抽样);多个群组下的统计分析;群组间和抽样间计量的可比性;缺失数据和自然减员。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Theoretical Sampling Design Options for a New Birth Cohort: An Accelerated Longitudinal Design Perspective
新生儿队列的理论抽样设计方案:加速纵向设计视角
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shlomo, N.
  • 通讯作者:
    Shlomo, N.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natalie Shlomo其他文献

Estimation of an indicator of the representativeness of survey response
  • DOI:
    10.1016/j.jspi.2011.07.008
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Natalie Shlomo;Chris Skinner;Barry Schouten
  • 通讯作者:
    Barry Schouten
Foreword to the special issue on “Survey Methods for Statistical Data Integration and New Data Sources: tools and real data applications for official statistics”
  • DOI:
    10.1007/s40300-024-00270-x
  • 发表时间:
    2024-03-19
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    M. Giovanna Ranalli;Jean-François Beaumont;Gaia Bertarelli;Natalie Shlomo
  • 通讯作者:
    Natalie Shlomo
Foreword to the special issue on “Survey Methods for Statistical Data Integration and New Data Sources”
  • DOI:
    10.1007/s40300-023-00248-1
  • 发表时间:
    2023-05-26
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    M. Giovanna Ranalli;Jean-François Beaumont;Gaia Bertarelli;Natalie Shlomo
  • 通讯作者:
    Natalie Shlomo
Rotation number for the one-dimensional Schr \"odinger operator with periodic singular potentials
具有周期性奇异势的一维 Schr "odinger 算子的旋转数
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin Karlberg;S. Biffignandi;P. Daas;Anders Holmberg;Beat Hulliger;Pascal Jacques;Risto Lehtonen;R. Münnich;Natalie Shlomo;R. Silberman;Ineke Stoop
  • 通讯作者:
    Ineke Stoop
Ask the Experts How to Measure Disclosure Risk in Microdata?
询问专家如何衡量微观数据中的披露风险?
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Natalie Shlomo
  • 通讯作者:
    Natalie Shlomo

Natalie Shlomo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natalie Shlomo', 18)}}的其他基金

Methodological Advancements on the use of Administrative Data in Official Statistics
官方统计中行政数据使用方法的进步
  • 批准号:
    ES/V005456/1
  • 财政年份:
    2021
  • 资助金额:
    $ 11.19万
  • 项目类别:
    Research Grant

相似海外基金

ERI: From Data to Design: Enhancing Pedestrian Infrastructure for Well-Being through Mobile Sensing and Experience Sampling in the Wild
ERI:从数据到设计:通过移动传感和野外体验采样增强行人基础设施以促进福祉
  • 批准号:
    2347012
  • 财政年份:
    2024
  • 资助金额:
    $ 11.19万
  • 项目类别:
    Standard Grant
Experimental Design-based Weighted Sampling
基于实验设计的加权抽样
  • 批准号:
    2310637
  • 财政年份:
    2023
  • 资助金额:
    $ 11.19万
  • 项目类别:
    Standard Grant
Sampling The Environment: Model And Design-based Sampling And Data Analysis
环境采样:基于模型和设计的采样和数据分析
  • 批准号:
    NE/Y003632/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11.19万
  • 项目类别:
    Training Grant
SHF: Small: A New Approach for Hardware Design of High-Precision Discrete Gaussian Sampling
SHF:小:高精度离散高斯采样硬件设计的新方法
  • 批准号:
    2146881
  • 财政年份:
    2022
  • 资助金额:
    $ 11.19万
  • 项目类别:
    Continuing Grant
Optimizing sampling design, data integration, and methods for understanding population dynamics and predicting ecological changes
优化抽样设计、数据整合以及了解种群动态和预测生态变化的方法
  • 批准号:
    RGPIN-2020-07034
  • 财政年份:
    2022
  • 资助金额:
    $ 11.19万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methodology for rank based sampling design and finite mixture models
基于等级的抽样设计和有限混合模型的统计方法
  • 批准号:
    RGPIN-2020-06696
  • 财政年份:
    2022
  • 资助金额:
    $ 11.19万
  • 项目类别:
    Discovery Grants Program - Individual
Optimizing sampling design, data integration, and methods for understanding population dynamics and predicting ecological changes
优化抽样设计、数据整合以及了解种群动态和预测生态变化的方法
  • 批准号:
    RGPNS-2020-07034
  • 财政年份:
    2022
  • 资助金额:
    $ 11.19万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
Optimizing sampling design, data integration, and methods for understanding population dynamics and predicting ecological changes
优化抽样设计、数据整合以及了解种群动态和预测生态变化的方法
  • 批准号:
    RGPNS-2020-07034
  • 财政年份:
    2021
  • 资助金额:
    $ 11.19万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
Optimization of Sampling Design For Predictive Digital Soil Mapping: Reducing Uncertainty, Improving Predictions and Gaining Efficiencies in Sampling Programs
预测数字土壤测绘的采样设计优化:减少不确定性、改进预测并提高采样计划的效率
  • 批准号:
    535671-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 11.19万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Optimizing sampling design, data integration, and methods for understanding population dynamics and predicting ecological changes
优化抽样设计、数据整合以及了解种群动态和预测生态变化的方法
  • 批准号:
    RGPIN-2020-07034
  • 财政年份:
    2021
  • 资助金额:
    $ 11.19万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了