New Cross-Sectionally Dependent Panel Data Methods for the Analysis of Macroeconomic and Financial Networks

用于分析宏观经济和金融网络的新横截面相关面板数据方法

基本信息

  • 批准号:
    ES/T01573X/1
  • 负责人:
  • 金额:
    $ 42.98万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

In the social sciences, it is common to use datasets in which information for a group of entities is recorded at multiple points in time. This is known as panel data and it forms the basis for longitudinal analysis. As with all statistical models, panel data models rely on assumptions. One common assumption of panel data models is that the residual variation in the data (i.e. that part of the variation in the data that the model cannot explain) is uncorrelated across entities. This is known as cross-sectional independence. However, this assumption is frequently violated in practice. The development of methods to control for cross-sectional dependence (CSD) is an active area of research.CSD can arise through two mechanisms. First, the data may exhibit spatial dependence, such that the behaviour of one entity may depend on the behaviour of its neighbours/peers. This is often called 'local' or 'weak' CSD. Second, the data for all entities may be influenced by one or more common factors. This is 'global' or 'strong' CSD. Often, both mechanisms may be jointly responsible for CSD. However, in practice, models that account for both spatial effects and common factors are rare, and those that do exist are highly stylised. We propose to develop a unifying framework for the estimation of sophisticated and realistic dynamic heterogeneous panel data models that account for spatial dependence and common factors.This project will generate three significant methodological advances. We will:(i) increase the flexibility and realism of spatial dynamic panel data models with common factors by developing techniques that allow for the model parameters to be heterogeneous across individuals, unlike most existing studies that assume parameter homogeneity.(ii) develop methods to exploit the network structure of spatial dynamic panel data models, opening new opportunities to use models of this type to understand the bilateral linkages among entities in the global economy.(iii) extend the methods discussed above from the common case of unilateral (or 2-dimensional) panel data to the more complex case of bilateral (3D) panel data, such as trade and investment flows.We will apply the methodologies that we develop to study three important aspects of globalisation. We will:(i) develop a new model to study the convergence of national business cycles onto a so-called global business cycle. Our model will allow us to separate convergence due to the effect of spatial linkages (e.g. trade and political relations, migration flows etc.) from convergence due to the influence of global factors. This model will help to guide the design of economic stabilisation policy in an interconnected world.(ii) develop a new model to study global trade flows and to separate the influence of spatial linkages (e.g. common borders, membership of free trade areas, common languages etc.) from global factors (e.g. the state of the global business cycle). The development of such models is of strategic importance to the UK, given the trade implications of Brexit.(iii) develop a new hierarchical model of global stock markets, where the performance of a firm may depend on spatial relations (e.g. linkages to other firms in its sector and/or in its geographical region) as well as a range of common factors (e.g. liquidity, investor risk aversion). Models of this type provide new insights into the globalised nature of economic activity and highlight opportunities and obstacles to economic growth for both the public and private sector.In sum, this project will make significant methodological contributions and will leverage these contributions to address pressing contemporary issues facing policymakers and professional economists alike.
在社会科学中,通常使用数据集,其中在多个时间点记录一组实体的信息。这就是所谓的面板数据,它构成了纵向分析的基础。与所有统计模型一样,面板数据模型依赖于假设。面板数据模型的一个常见假设是,数据中的残差变化(即模型无法解释的数据变化部分)在实体之间不相关。这被称为横截面独立性。然而,这一假设在实践中经常被违反。控制横截面依赖性(CSD)的方法的发展是一个活跃的研究领域。CSD可以通过两种机制产生。首先,数据可能表现出空间依赖性,使得一个实体的行为可能取决于其邻居/对等体的行为。这通常被称为“局部”或“弱”CSD。第二,所有实体的数据可能受到一个或多个共同因素的影响。这是“全局”或“强”CSD。通常,这两个机制可能共同负责可持续发展委员会。然而,在实践中,既考虑空间效应又考虑共同因素的模型很少,而那些确实存在的模型则高度程式化。我们建议开发一个统一的框架来估计复杂而现实的动态异质面板数据模型,该模型考虑了空间依赖性和共同因素。我们将:(i)增加空间动态面板数据模型的灵活性和现实性与共同的因素,通过开发技术,允许模型参数是异质性的个人,不像大多数现有的研究,假设参数同质性。(ii)开发利用空间动态面板数据模型网络结构的方法,为利用这类模型了解全球经济实体之间的双边联系提供新的机会。(iii)将上述讨论的方法从常见的单边(或二维)面板数据扩展到更复杂的双边(三维)面板数据,如贸易和投资流动。我们将应用我们开发的方法来研究全球化的三个重要方面。我们将:(i)开发一个新的模型,研究国家商业周期与所谓的全球商业周期的融合。我们的模型将使我们能够区分由于空间联系(如贸易和政治关系,移民流动等)的影响而产生的趋同。由于全球因素的影响,这一模型将有助于在一个相互关联的世界中指导经济稳定政策的设计。(ii)开发一个新的模式,研究全球贸易流动,并区分空间联系的影响(例如共同边界、自由贸易区成员资格、共同语言等)全球因素(如全球商业周期的状况)。考虑到英国退欧对贸易的影响,这种模型的开发对英国具有战略重要性。(iii)制定一个新的全球股票市场等级模型,其中一个公司的业绩可能取决于空间关系(例如与其部门和/或地理区域内其他公司的联系)以及一系列共同因素(例如流动性、投资者风险规避)。这类模型为经济活动的全球化本质提供了新的见解,并突出了公共和私营部门经济增长的机会和障碍。总之,该项目将做出重大的方法论贡献,并将利用这些贡献来解决政策制定者和专业经济学家面临的紧迫的当代问题。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recent developments of the autoregressive distributed lag modelling framework
  • DOI:
    10.1111/joes.12450
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Cho, Jin Seo;Greenwood-Nimmo, Matthew;Shin, Yongcheol
  • 通讯作者:
    Shin, Yongcheol
Testing for correlation between the regressors and factor loadings in heterogeneous panels with interactive effects
测试具有交互效应的异质面板中回归量和因子载荷之间的相关性
  • DOI:
    10.1007/s00181-023-02390-1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Kapetanios G
  • 通讯作者:
    Kapetanios G
Nonparametric homogeneity pursuit in functional-coefficient models
  • DOI:
    10.1080/10485252.2021.1951265
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Jia Chen;Degui Li;Lingling Wei;Wenyang Zhang
  • 通讯作者:
    Jia Chen;Degui Li;Lingling Wei;Wenyang Zhang
On the International Spillover Effects of Country-Specific Financial Sector Bailouts and Sovereign Risk Shocks *
关于特定国家金融部门救助和主权风险冲击的国际溢出效应*
  • DOI:
    10.1111/1475-4932.12580
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Greenwood-Nimmo M
  • 通讯作者:
    Greenwood-Nimmo M
Spatial Attendance Spillover in Football Leagues
足球联赛中的空间上座率溢出
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongcheol Shin其他文献

Reflections on “Testing for unit roots in heterogeneous panels”
关于“异质面板中的单位根检验”的思考
  • DOI:
    10.1016/j.jeconom.2023.01.022
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Kyung So Im;M. Hashem Pesaran;Yongcheol Shin
  • 通讯作者:
    Yongcheol Shin
CAMBRIDGE WORKING PAPERS IN ECONOMICS Reflections on "Testing for Unit Roots in Heterogeneous Panels"
剑桥经济学工作论文对“异质面板中单位根检验”的思考
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kyung So;Im M. Hashem Pesaran;Kyung So Im;M. Pesaran;Yongcheol Shin
  • 通讯作者:
    Yongcheol Shin
Reprint of: Testing for unit roots in heterogeneous panels
转载:异质面板中的单位根检验
  • DOI:
    10.1016/j.jeconom.2023.03.002
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Kyung So Im;M. Hashem Pesaran;Yongcheol Shin
  • 通讯作者:
    Yongcheol Shin
What is mine is yours: Sovereign risk transmission during the European debt crisis
  • DOI:
    10.1016/j.jfs.2023.101103
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Greenwood-Nimmo;Viet Hoang Nguyen;Yongcheol Shin
  • 通讯作者:
    Yongcheol Shin

Yongcheol Shin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongcheol Shin', 18)}}的其他基金

Threshold Regression Models in Dynamic Heterogeneous Panels
动态异构面板中的阈值回归模型
  • 批准号:
    ES/G020825/1
  • 财政年份:
    2008
  • 资助金额:
    $ 42.98万
  • 项目类别:
    Research Grant

相似国自然基金

胰岛素样生长信号介导的肺巨噬细胞和上皮细胞cross-tolk通过核自噬参与慢性气道炎症形成的机制研究
  • 批准号:
    JCZRYB202500229
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于NLRP3炎性小体与自噬Cross-talk探讨心康冲剂干预心肌纤维化的机制研究
  • 批准号:
    2025JJ80174
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
PKM2琥珀酰化修饰介导癌细胞与血小板间Cross-talk调控胆管癌侵袭转移的研究
  • 批准号:
    JCZRYB202500379
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于破骨-成骨细胞Cross-Talk探讨内固定物存留对关节软骨退变的影响及补肾强骨治法的科学内涵
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
三痹汤激活线粒体自噬影响免疫细胞Cross talk延缓椎间盘退变的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
PGK1乙酰化修饰介导癌细胞与TAMs间Cross-talk调控胆囊癌EMT的研究
  • 批准号:
    82373032
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
线粒体ClpP激动剂通过铁死亡-免疫调控cross-talk治疗急性髓细胞白血病的机制研究
  • 批准号:
    82370171
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
生长激素受体通过脂肪酸介导的肝脏-脂肪Cross-talk影响脂质内稳态的研究
  • 批准号:
    82370866
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于“cross-β折叠”结构形成理论解析面筋蛋白淀粉样纤维的形成机制
  • 批准号:
    32372365
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目

相似海外基金

Cross-Pollination Skillsets: Growing Mechatronics and Agricultural Collaborations for Producing Skilled Agricultural Technicians
异花授粉技能:不断发展机电一体化和农业合作,培养熟练的农业技术人员
  • 批准号:
    2350254
  • 财政年份:
    2024
  • 资助金额:
    $ 42.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Laboratory Measurements of Oxygen (O) and Nitrogen (N2) Ultraviolet (UV) Cross Sections by Particle Impact for Remote Sensing of Thermosphere O/N2 Variation
合作研究:通过粒子撞击实验室测量氧气 (O) 和氮气 (N2) 紫外线 (UV) 截面,以遥感热层 O/N2 变化
  • 批准号:
    2334619
  • 财政年份:
    2024
  • 资助金额:
    $ 42.98万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
  • 批准号:
    2305325
  • 财政年份:
    2024
  • 资助金额:
    $ 42.98万
  • 项目类别:
    Fellowship Award
Catalyzing Sustainable Air Travel: Unveiling Consumer Willingness to Pay for Sustainable Aviation Fuel through Information Treatment in Choice Experiment and Cross-Country Analysis
促进可持续航空旅行:通过选择实验和跨国分析中的信息处理揭示消费者支付可持续航空燃油的意愿
  • 批准号:
    24K16365
  • 财政年份:
    2024
  • 资助金额:
    $ 42.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Preparation for the Deep Underground Neutrino Experiment and Measurement of Pion-Argon Cross-sections
深部地下中微子实验准备及π-氩截面测量
  • 批准号:
    2902765
  • 财政年份:
    2024
  • 资助金额:
    $ 42.98万
  • 项目类别:
    Studentship
NSF PRFB FY23: Cross-species gene regulation of a plant-fungal symbiosis under environmental stress
NSF PRFB FY23:环境胁迫下植物-真菌共生的跨物种基因调控
  • 批准号:
    2305481
  • 财政年份:
    2024
  • 资助金额:
    $ 42.98万
  • 项目类别:
    Fellowship Award
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 42.98万
  • 项目类别:
    Standard Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
  • 批准号:
    2400227
  • 财政年份:
    2024
  • 资助金额:
    $ 42.98万
  • 项目类别:
    Continuing Grant
The molecular basis of T cell receptor cross-reactivity between MHC and MR1
MHC 和 MR1 之间 T 细胞受体交叉反应的分子基础
  • 批准号:
    DP240102905
  • 财政年份:
    2024
  • 资助金额:
    $ 42.98万
  • 项目类别:
    Discovery Projects
A Cross-Linguistic Study on Speech Fluency in L1 Japanese and L2 English
日语一级和英语二级的言语流利度跨语言研究
  • 批准号:
    24K04169
  • 财政年份:
    2024
  • 资助金额:
    $ 42.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了