UK SMEs: quantifying their pandemic risk and credit risk exposures in the wake of the COVID-19
英国中小企业:量化 COVID-19 后的流行病风险和信用风险敞口
基本信息
- 批准号:ES/V015419/1
- 负责人:
- 金额:$ 38.04万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Small and medium-sized enterprises (SMEs) constitute a critical pillar of the UK economy. More than 99% of the roughly 6 million businesses in the UK are SMEs and they employ more than 16 million workers. As the impact of the COVID-19 pandemic becomes clearer, it is evident that SMEs are facing serious and unprecedented challenges, including declining revenues, defaulting on loans, inability to retain employees and postponing growth plans. However, many SMEs in the UK find it extremely difficult to obtain funding through standard banking channels as the lack of financial information about SMEs makes it difficult to evaluate SMEs' credit risk and debt repayment capacity. Hence, to meet all these pressing needs, it is critical to develop an efficient protocol to assess SMEs' pandemic risk exposure and SMEs' resilience towards funding shortages caused by COVID-19.This project will use Artificial intelligence (AI) techniques including Machine Learning (ML), Deep Learning (DL), and Big Data to develop two novel analytical tools:1) The Pandemic Risk Index of UK SMEs (PRI):In this strand, the project will develop a novel Pandemic Risk Index (PRI) to model the potential economic, financial, and reputational effects of COVID-19 on UK SMEs in the short and long run. The academic and professional literature emerging in the wake of the COVID-19 crisis has considered several factors in isolation. However, this index aims to combine as many COVID-19- relevant variables as possible into one holistic multidimensional set of metrics. This is to have a better informed understanding of the big picture by accounting for and explaining the various weights and interrelationships of these variables. The main variables (but not exclusively) of this index would be (all of them are at the firm-level): exposure to global supply chains, exposure to international capital markets, corporate governance, financial flexibility, and geographical proximity to COVID-19 hotspots.2) AI-based Programme Suite to assess the Credit Risk of Borrowing UK SMEs (AI_CREDIT):In this strand, the project will develop an effective AI-based Python programme suite (AI_CREDIT) using Machine Learning (ML) and Deep Learning (DL) to provide policymakers in the UK government and financial intermediaries with an accurate and timely evaluation of an SME borrower's credit risk profile. With this, policymakers and lenders can make prompt decisions in providing appropriate emergency loans to SMEs to overcome their funding shortages and mitigate the impact of COVID-19. Based on the cutting-edge application of ML/DL to corporate credit risk, this project will develop a novel programme suite by integrating innovative methods. The innovations introduced by this project will extend the application of ML/DL in the estimation of SMEs' credit profiles by training ML/DL with a large amount of seemingly irrelevant data about large firms. The research impact of this project is relevant to many stakeholders. Policymakers and lenders can directly benefit by gaining access to novel tools to allocate funds and support SMEs efficiently. Other financial institutions including Insurance companies and private equity funds will benefit from the tools in assessing the risk related to SMEs in terms of insurance policies and investment decisions, respectively. All these are likely to lead to efficient allocation of funds and reduction of cost of funds allocated to SMEs which in turn will help SMEs to survive and thrive the current and any future pandemic disruptions. The planned project is UK wide, and it will be applicable to all UK SMEs. The project is in collaboration with the Bank of England and the Confederation of British Industry (CBI). CBI is a leading business lobby group that promotes business interests within public bodies and deals with the impact of policy on businesses in the UK. The engagement with the project partners and other stakeholders is crucial to scale up the implement
中小企业是英国经济的重要支柱。在英国约600万家企业中,99%以上是中小企业,雇用了1600多万工人。随着COVID-19疫情的影响变得更加清晰,中小企业显然正面临着严峻和前所未有的挑战,包括收入下降,贷款违约,无法留住员工和推迟增长计划。然而,英国的许多中小企业发现,通过标准的银行渠道获得资金极为困难,因为缺乏中小企业的财务信息,难以评估中小企业的信贷风险和偿债能力。因此,为了满足所有这些迫切的需求,开发一个有效的协议来评估中小企业的流行病风险敞口和中小企业对COVID-19造成的资金短缺的抵御能力至关重要。本项目将使用人工智能(AI)技术,包括机器学习(ML),深度学习(DL)和大数据,开发两个新的分析工具:1)英国中小企业流行病风险指数(PRI):在这方面,该项目将开发一个新的流行病风险指数(PRI),以模拟COVID-19对英国中小企业的短期和长期潜在经济,财务和声誉影响。COVID-19危机后出现的学术和专业文献孤立地考虑了几个因素。然而,该指数旨在将尽可能多的COVID-19相关变量联合收割机组合成一个整体的多维度指标集。这是为了通过说明和解释这些变量的各种权重和相互关系,更好地了解大局。的主要变量(但不限于)该指数将是(所有这些都是在公司层面):对全球供应链的风险敞口,对国际资本市场的风险敞口,公司治理,财务灵活性,以及地理上接近COVID-19热点。2)基于人工智能的程序套件,以评估借款英国中小企业的信用风险(AI_CREDIT):在这条河上,该项目将开发一个有效基于人工智能的Python程序套件(AI_CREDIT)使用机器学习(ML)和深度学习(DL)为英国政府和金融中介机构的决策者提供对中小企业借款人信用风险状况的准确和及时的评估。借此,政策制定者及贷款人可迅速作出决定,向中小企业提供适当的紧急贷款,以克服其资金短缺及减轻COVID-19的影响。基于ML/DL在企业信用风险中的前沿应用,该项目将通过整合创新方法开发一个新的程序套件。该项目引入的创新将扩展ML/DL在估计中小企业信用状况方面的应用,通过使用大量关于大公司的看似无关的数据来训练ML/DL。该项目的研究影响与许多利益攸关方有关。政策制定者和贷款人可以通过获得新的工具来有效地分配资金和支持中小企业而直接受益。其他金融机构,包括保险公司和私人股本基金,将受益于这些工具,分别在保险政策和投资决策方面评估与中小企业有关的风险。所有这些都可能导致资金的有效分配,并降低分配给中小企业的资金成本,从而帮助中小企业在当前和未来的疫情干扰中生存和发展。计划中的项目是全英国范围的,将适用于所有英国中小企业。该项目与英格兰银行和英国工业联合会(CBI)合作。CBI是一个领先的商业游说团体,促进公共机构内的商业利益,并处理政策对英国企业的影响。与项目合作伙伴和其他利益攸关方的接触对于扩大实施规模至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meryem Duygun其他文献
Islamic Banks, Deposit Insurance Reform, and Market Discipline: Evidence from a Natural Framework
伊斯兰银行、存款保险改革和市场纪律:来自自然框架的证据
- DOI:
10.1007/s10693-016-0248-z - 发表时间:
2016 - 期刊:
- 影响因子:1.4
- 作者:
A. Aysan;Mustafa Disli;Meryem Duygun;Huseyin Ozturk - 通讯作者:
Huseyin Ozturk
The cost efficiency of water utilities: when does public ownership matter?
水务公司的成本效率:公有制何时重要?
- DOI:
10.1080/03003930.2016.1207630 - 发表时间:
2015 - 期刊:
- 影响因子:1.9
- 作者:
Silvia Pazzi;Emili Tortosa‐Ausina;Meryem Duygun;Simona Zambelli - 通讯作者:
Simona Zambelli
Bridging the credit gap: The influence of regional bank structure on the expansion of peer-to-peer lending
弥合信贷差距:区域银行结构对点对点借贷扩张的影响
- DOI:
10.1016/j.bar.2024.101448 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:9.400
- 作者:
Nourhan Eid;Junhong Yang;Meryem Duygun - 通讯作者:
Meryem Duygun
Bankruptcy prediction with financial systemic risk
- DOI:
https://doi.org/10.1080/1351847X.2019.1656095 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Zhehao Jia;Yukun Shi;Cheng Yan;Meryem Duygun - 通讯作者:
Meryem Duygun
Impact of board diversity on Chinese firms’ cross-border M&A performance: An artificial intelligence approach
董事会多样性对中国企业跨境并购绩效的影响:一种人工智能方法
- DOI:
10.1016/j.iref.2024.02.077 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:5.600
- 作者:
Shusheng Ding;Min Du;Tianxiang Cui;Yongmin Zhang;Meryem Duygun - 通讯作者:
Meryem Duygun
Meryem Duygun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于YBCO超导带材的SMES磁体的基础问题研究
- 批准号:51177161
- 批准年份:2011
- 资助金额:68.0 万元
- 项目类别:面上项目
相似海外基金
多様化する電力系統のSMESを用いた系統安定度測定と安定運用に関する研究
电力系统多样化SMES系统稳定性测量及稳定运行研究
- 批准号:
23K22748 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Early warning financial risk system to help Midlands-based manufacturing SMEs navigate economic turmoil
金融风险预警系统帮助中部制造业中小企业应对经济动荡
- 批准号:
10081620 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Collaborative R&D
Aurora - transparent co-insurance for SMEs
Aurora - 为中小企业提供透明的共同保险
- 批准号:
10060843 - 财政年份:2023
- 资助金额:
$ 38.04万 - 项目类别:
Collaborative R&D
Data Driven Cyber Security Incident Prediction for IT SMEs (DaSIPreS)
IT 中小企业数据驱动的网络安全事件预测 (DaSIPreS)
- 批准号:
10077591 - 财政年份:2023
- 资助金额:
$ 38.04万 - 项目类别:
Collaborative R&D
Professional rental/hire portal for arts SMEs and individuals
面向艺术中小企业和个人的专业租赁/租赁门户
- 批准号:
10070997 - 财政年份:2023
- 资助金额:
$ 38.04万 - 项目类别:
Collaborative R&D
Empirical study on risks faced by SMEs and the role of insurance
中小企业面临的风险及保险作用的实证研究
- 批准号:
23K01455 - 财政年份:2023
- 资助金额:
$ 38.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Impact of Improving Financial Literacy of SMEs Managers and Implications for Central Banks' Communication Strategies
提高中小企业管理者金融素养的影响及对央行沟通策略的启示
- 批准号:
23K01470 - 财政年份:2023
- 资助金额:
$ 38.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving the international competitiveness of SMEs: Creating synergies between overseas M&A management and domestic businesses
提升中小企业国际竞争力:发挥海外中小企业协同效应
- 批准号:
23K12530 - 财政年份:2023
- 资助金额:
$ 38.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Enabling profitable digital advertising for British SMEs with AI-powered multichannel ads brokerage service
通过人工智能驱动的多渠道广告经纪服务,为英国中小企业实现盈利的数字广告
- 批准号:
10070962 - 财政年份:2023
- 资助金额:
$ 38.04万 - 项目类别:
Collaborative R&D
The development of an innovative platform to improve SMEs' ability to provide occupational health services to their workforce and performance in the workplace
开发创新平台,提高中小企业为其员工提供职业健康服务的能力和工作场所的绩效
- 批准号:
10074119 - 财政年份:2023
- 资助金额:
$ 38.04万 - 项目类别:
Small Business Research Initiative














{{item.name}}会员




