A graphical model approach to pedigree construction using constrained optimisation
使用约束优化进行谱系构建的图形模型方法
基本信息
- 批准号:G1002312/1
- 负责人:
- 金额:$ 56.91万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Population biobanks with genetic data on large numbers of unrelated individuals have been enormously successful in detecting common genetic variants affecting diseases of public health concern. Attention is now shifting towards finding rarer variants and to investigating gene-gene and gene-environment interaction effects. Ideally, related individuals are required for this, but family studies are no longer routinely collected. In reality most large population studies, especially those collected from a particular geographical region, will contain sets of (undeclared) relatives. Identification of relatives from existing biobank data would be highly beneficial, both in furthering the use of these studies to search for rare variants and in adjusting statistical analyses to take account of relatedness. Although a crude or general measure of relatedness might be enough if the aim is solely to find individuals who might share rare variants, having a good estimate of the true relationship, or pedigree, would be much better if this could be obtained efficiently: it would enable better adjustment methods and facilitate the search for genes with many variants segregating in different families rather than a single variant across the population. Our proposal is to develop efficient methods for reconstructing pedigrees from genetic data in large population studies. We will use fast combinatorial optimisation algorithms developed in computer science. These are general graph-searching algorithms but, because a pedigree is a special kind of graph and genetic data are correlated in very particular ways, we will adapt the algorithms to search for valid structures. Adaptation is performed by imposing constraints. One of the main challenges in the project is to formulate constraints that work efficiently and incorporate the relevant biology. The general algorithms assume that all individuals in the pedigree are in the study and have complete genetic data. This does not hold for this application as unobserved individuals will typically be required to provide the missing links connecting the relatives in the study. Our algorithms will search over all possible pedigrees with missing individuals. Finally, we will incorporate additional non-genetic information via a Bayesian framework to inform the search that some relationships are known with certainty or up to some degree of confidence, for example. All our methods will be developed using simulated data but will be tested using real data from the Avon Longitudinal Study of Parents and Children (ALSPAC). Fast and efficient pedigree reconstruction would permit much fuller use of existing population cohort studies for genetic research.
拥有大量无关个体遗传数据的人口生物库在检测影响公共卫生问题疾病的常见遗传变异方面取得了巨大成功。现在人们的注意力正转向寻找更罕见的变异,并研究基因-基因和基因-环境相互作用的影响。理想情况下,需要相关的个人,但家庭研究不再是常规收集。事实上,大多数大型人口研究,特别是从特定地理区域收集的研究,将包含(未申报的)亲属集。从现有的生物库数据中识别亲属将是非常有益的,无论是在进一步使用这些研究来寻找罕见的变异,还是在调整统计分析以考虑相关性方面。虽然如果目的仅仅是找到可能共享罕见变异的个体,那么粗略或一般的相关性度量可能就足够了,但如果能够有效地获得对真实关系或谱系的良好估计,则会更好:它将使更好的调整方法成为可能,并有助于搜索在不同家族中分离的具有许多变异的基因,而不是整个人群中的单一变异。我们的建议是开发有效的方法,从大人口研究的遗传数据重建谱系。我们将使用计算机科学中开发的快速组合优化算法。这些都是一般的图搜索算法,但是,因为系谱是一种特殊的图,遗传数据以非常特殊的方式相关,我们将调整算法来搜索有效的结构。通过施加约束来执行适应。该项目的主要挑战之一是制定有效工作的约束条件并纳入相关生物学。一般算法假设系谱中的所有个体都在研究中并且具有完整的遗传数据。这不适用于本申请,因为通常需要未观察到的个体提供研究中亲属之间的缺失联系。我们的算法将搜索所有可能的家系与失踪的个人。最后,我们将通过贝叶斯框架纳入额外的非遗传信息,以告知搜索某些关系是确定的或达到一定程度的置信度。我们所有的方法都将使用模拟数据开发,但将使用来自雅芳父母和儿童纵向研究(ALSPAC)的真实的数据进行测试。快速而有效的谱系重建将允许更充分地利用现有的人口队列研究进行遗传研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Cussens其他文献
Open Banking and data reassurance: the case of tenant referencing in the UK
开放银行和数据保证:英国租户参考案例
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Alexandra Ciocănel;Alison Wallace;David Beer;James Cussens;Roger Burrows - 通讯作者:
Roger Burrows
Valuing the manual: the demarcation of embodied practices within algorithmic decision-making processes
评估手册:算法决策过程中具体实践的划分
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
David Beer;Alison Wallace;Roger Burrows;Alexandra Ciocănel;James Cussens - 通讯作者:
James Cussens
Results from an amino acid racemization inter-laboratory proficiency study; design and performance evaluation
- DOI:
10.1016/j.quageo.2012.11.001 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:
- 作者:
Joanne Powell;Matthew J. Collins;James Cussens;Norman MacLeod;Kirsty E.H. Penkman - 通讯作者:
Kirsty E.H. Penkman
The dual polyhedron to the chordal graph polytope and the rebuttal of the chordal graph conjecture
- DOI:
10.1016/j.ijar.2021.07.014 - 发表时间:
2021-11-01 - 期刊:
- 影响因子:
- 作者:
Milan Studený;James Cussens;Václav Kratochvíl - 通讯作者:
Václav Kratochvíl
Preface to the special issue on inductive logic programming
- DOI:
10.1007/s10994-018-5720-6 - 发表时间:
2018-06-06 - 期刊:
- 影响因子:2.900
- 作者:
James Cussens;Alessandra Russo - 通讯作者:
Alessandra Russo
James Cussens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
运用3D打印和生物反应器构建仿生尿道模型探索Hippo-YAP信号通路调控尿道损伤修复的机制研究
- 批准号:82370684
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于影像代谢重塑可视化的延胡索酸水合酶缺陷型肾癌危险性分层模型的研究
- 批准号:82371912
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
半参数空间自回归面板模型的有效估计与应用研究
- 批准号:71961011
- 批准年份:2019
- 资助金额:16.0 万元
- 项目类别:地区科学基金项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
人胆囊源CD63+细胞的干性特征与分化特性的研究
- 批准号:31970753
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
- 批准号:71771224
- 批准年份:2017
- 资助金额:49.0 万元
- 项目类别:面上项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
凯莱流形上的几何流
- 批准号:11771301
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Integrating high-throughput histology with systems genetics through causal graphical models
通过因果图模型将高通量组织学与系统遗传学相结合
- 批准号:
10366570 - 财政年份:2022
- 资助金额:
$ 56.91万 - 项目类别:
Integrating high-throughput histology with systems genetics through causal graphical models
通过因果图模型将高通量组织学与系统遗传学相结合
- 批准号:
10549831 - 财政年份:2022
- 资助金额:
$ 56.91万 - 项目类别:
OpenSim Enhancements to Enable Computational Design of Personalized Treatments for Movement Impairments
OpenSim 增强功能可实现针对运动障碍的个性化治疗的计算设计
- 批准号:
10297893 - 财政年份:2021
- 资助金额:
$ 56.91万 - 项目类别:
OpenSim Enhancements to Enable Computational Design of Personalized Treatments for Movement Impairments
OpenSim 增强功能可实现针对运动障碍的个性化治疗的计算设计
- 批准号:
10482399 - 财政年份:2021
- 资助金额:
$ 56.91万 - 项目类别:
OpenSim Enhancements to Enable Computational Design of Personalized Treatments for Movement Impairments
OpenSim 增强功能可实现针对运动障碍的个性化治疗的计算设计
- 批准号:
10680443 - 财政年份:2021
- 资助金额:
$ 56.91万 - 项目类别:
Multi-Scale Modeling of Vascular Signaling Units
血管信号单元的多尺度建模
- 批准号:
10406687 - 财政年份:2021
- 资助金额:
$ 56.91万 - 项目类别:
Cloud-based High-throughput Acquisition and Analytics of Zebrafish Electrocardiogram for Cardiac Studies and Drug Development
基于云的斑马鱼心电图高通量采集和分析,用于心脏研究和药物开发
- 批准号:
10248546 - 财政年份:2018
- 资助金额:
$ 56.91万 - 项目类别:
Cloud-based High-throughput Acquisition and Analytics of Zebrafish Electrocardiogram for Cardiac Studies and Drug Development
基于云的斑马鱼心电图高通量采集和分析,用于心脏研究和药物开发
- 批准号:
10080511 - 财政年份:2018
- 资助金额:
$ 56.91万 - 项目类别:
Integrated photoacoustic and fluorescence imaging system for anatomical, functional, and molecular characterization of murine models
集成光声和荧光成像系统,用于小鼠模型的解剖、功能和分子表征
- 批准号:
9201342 - 财政年份:2017
- 资助金额:
$ 56.91万 - 项目类别: