Integrating statistical genetics with nonlinear fixed effect pharmacokinetic models to advance high-throughput personalized drug therapy

将统计遗传学与非线性固定效应药代动力学模型相结合,推进高通量个性化药物治疗

基本信息

  • 批准号:
    MR/J014338/1
  • 负责人:
  • 金额:
    $ 39.64万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Pharmacogenetics in pharmacokinetics (PGPK) studies the relationship between variations in DNA sequence on ADME processes and other drug-related outcomes. The European Medicine Agency (EMA) has formally acknowledged the importance of PGPK in a reflection paper in 2007. For example, they recommend the testing of polymorphisms in UGT1A1 and TPMT, which encode enzymes involved in the disposition of irinotecan and mercaptopurine, respectively. In HIV antiretroviral therapy, the CYP2B6 G516T heterozygote and rare homozygote have been found to have 1.4 and 3 times higher concentrations of efavirenz whereas Plasma levels of atazanavir (recently developed protease inhibitor) were shown to be 2.8 and 3.5 higher in patients with the common homozygote than in heterozygotes or rare homozygotes for the MDR1 C3435T variant.About 30 years ago, nonlinear mixed effects (NLME) models were introduced to the biomedical field and have substantially improved the information learned from preclinical and clinical pharmacokinetic (PK) trials. Indeed, NLME models allow quantification of parameters influencing the complex physiological processes underlying the dose-response relationship. Recently the NLME modelling community has shown a growing interest in multiple single nucleotide polymorphisms (SNPs) analyses. However, the nonlinear structure of the PK models and the potential of association from each SNP to one or more physiological parameters represent great statistical and computational challenges. This research project aims at bridging the gap between the analysis of PK data and the growing body of genetics information by integrating the cutting-edge methods developed in genetic statistics into the NLME framework required to handle pharmacokinetic profiles. The computational burden, robustness and power of the statistical methods under study will be assessed on the basis of simulations (aims 1 and 2). Further the statistical developments will be applied to the analysis of PGPK studies performed in both public and industrial projects (aim 3).This research project will be conducted by Dr. Julie Bertrand under the supervision of Pr. David Balding and involves multiple public and industrial collaborations including the University College London (UCL) in the UK, the French National Agency of research in AIDS (ANRS) in France and the pharmaceutical company Servier in France.
药代动力学药物遗传学(PGPK)研究ADME过程中DNA序列变异与其他药物相关结果之间的关系。欧洲药品管理局(EMA)在2007年的一份反思文件中正式承认了PGPK的重要性。例如,他们建议检测UGT 1A 1和TPMT的多态性,这两种基因分别编码参与伊立替康和巯基嘌呤处置的酶。在HIV抗逆转录病毒治疗中,发现CYP 2B 6 G516 T杂合子和罕见纯合子的依法韦仑浓度分别高1.4和3倍,而阿扎那韦的血浆水平(最近开发的蛋白酶抑制剂)在具有常见纯合子的患者中显示出比MDR 1 C3435 T变体的杂合子或罕见纯合子高2.8和3.5。非线性混合效应(NLME)模型被引入到生物医学领域,并且已经实质上改进了从临床前和临床药代动力学(PK)试验中获得的信息。事实上,NLME模型允许量化影响剂量-反应关系的复杂生理过程的参数。最近,NLME建模社区对多个单核苷酸多态性(SNP)分析表现出越来越大的兴趣。然而,PK模型的非线性结构和每个SNP与一个或多个生理参数的关联潜力代表了巨大的统计和计算挑战。本研究项目旨在通过将遗传统计学中开发的尖端方法整合到处理药代动力学特征所需的NLME框架中,弥合PK数据分析与不断增长的遗传学信息之间的差距。将在模拟的基础上评估所研究的统计方法的计算负担、稳健性和功效(目标1和2)。进一步的统计发展将应用于公共和工业项目中进行的PGPK研究的分析(目标3)。该研究项目将由Julie Bertrand博士在大卫鲍尔丁教授的监督下进行,涉及多个公共和工业合作,包括英国的伦敦大学学院(UCL),法国国家艾滋病研究机构(ANRS)和法国的施维雅制药公司。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling the pharmacological response to advance the research in pharmacogenetics
建立药理反应模型以推进药物遗传学研究
Integrating dynamic mixed-effect modelling and penalized regression to explore genetic association with pharmacokinetics.
  • DOI:
    10.1097/fpc.0000000000000127
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Bertrand J;De Iorio M;Balding DJ
  • 通讯作者:
    Balding DJ
Genetics of Nevirapine Metabolic Pathways at Steady State in HIV-Infected Cambodians.
感染艾滋病毒的柬埔寨人稳态奈韦拉平代谢途径的遗传学。
Bayesian Variable Selection for high-throughput genetic association analysis in population pharmacokinetics.
用于群体药代动力学中高通量遗传关联分析的贝叶斯变量选择。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bertrand J
  • 通讯作者:
    Bertrand J
CYP2B6 and NAT2 genetic polymorphisms enlighten the pharmacokinetics interaction of efavirenz with rifampicin and isoniazid - ANRS 12154 trial
CYP2B6 和 NAT2 基因多态性揭示依非韦伦与利福平和异烟肼的药代动力学相互作用 - ANRS 12154 试验
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julie Bertrand其他文献

Performance Comparison of Various Maximum Likelihood Nonlinear Mixed-effects Estimation Methods for Dose-response Models Eight Scenarios Were Considered Using a Sigmoid E Model, with Varying Sigmoidicity Factors and Residual Error Models. 100 Max Simulated Datasets for Each Scenario Were Generated.
剂量反应模型的各种最大似然非线性混合效应估计方法的性能比较使用具有不同 S 型因子和残差模型的 S 型 E 模型考虑了八种情况。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Plan;Alan Maloney;F. Mentr;Mats O. Karlsson;Julie Bertrand
  • 通讯作者:
    Julie Bertrand
Modeling Longitudinal Daily Seizure Frequency Data from Pregaba- Lin Add-on Treatment. Equal Contribution). Transient Lower Esophageal Sphincter Relaxations Pkpd Modeling: Count Model and Repeated Time-to- Event Model. Pharmacometric Methods and Novel Models for Discrete Data
对 Pregaba-Lin 附加治疗的纵向每日癫痫发作频率数据进行建模。
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicolas Paquereau;E. Plan;Yang Sun;Mats O. Karlsson;Alan Maloney;F. Mentré;Julie Bertrand;Jae Eun Ahn;G. Ma;Mats Nagard;Jörgen Jensen;Kristin E. Karlsson
  • 通讯作者:
    Kristin E. Karlsson
Correction: Uncertainty Computation at Finite Distance in Nonlinear Mixed Effects Models—a New Method Based on Metropolis–Hastings Algorithm
  • DOI:
    10.1208/s12248-024-00933-7
  • 发表时间:
    2024-06-06
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Mélanie Guhl;Julie Bertrand;Lucie Fayette;François Mercier;Emmanuelle Comets
  • 通讯作者:
    Emmanuelle Comets

Julie Bertrand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Integrating high-throughput histology with systems genetics through causal graphical models
通过因果图模型将高通量组织学与系统遗传学相结合
  • 批准号:
    10366570
  • 财政年份:
    2022
  • 资助金额:
    $ 39.64万
  • 项目类别:
Genetic relationships between PTSD and Alcohol Use Disorder: Integrating GWAS and Deeply Phenotyped Longitudinal data.
PTSD 和酒精使用障碍之间的遗传关系:整合 GWAS 和深度表型纵向数据。
  • 批准号:
    10672457
  • 财政年份:
    2022
  • 资助金额:
    $ 39.64万
  • 项目类别:
Genetic relationships between PTSD and Alcohol Use Disorder: Integrating GWAS and Deeply Phenotyped Longitudinal data.
PTSD 和酒精使用障碍之间的遗传关系:整合 GWAS 和深度表型纵向数据。
  • 批准号:
    10418931
  • 财政年份:
    2022
  • 资助金额:
    $ 39.64万
  • 项目类别:
Integrating high-throughput histology with systems genetics through causal graphical models
通过因果图模型将高通量组织学与系统遗传学相结合
  • 批准号:
    10549831
  • 财政年份:
    2022
  • 资助金额:
    $ 39.64万
  • 项目类别:
Identifying molecular pathways in childhood asthma pathogenesis by integrating newborn metabolic profiles and GWAS data
通过整合新生儿代谢特征和 GWAS 数据来确定儿童哮喘发病机制的分子途径
  • 批准号:
    10612834
  • 财政年份:
    2022
  • 资助金额:
    $ 39.64万
  • 项目类别:
Precision Approaches to Treat Mantle Cell Lymphoma: Integrating Multi-omics Based Models
治疗套细胞淋巴瘤的精准方法:整合基于多组学的模型
  • 批准号:
    10530111
  • 财政年份:
    2022
  • 资助金额:
    $ 39.64万
  • 项目类别:
Statistical and Machine Learning Methods to Address Biomedical Challenges for Integrating Multi-view Data
解决生物医学集成多视图数据挑战的统计和机器学习方法
  • 批准号:
    10711864
  • 财政年份:
    2021
  • 资助金额:
    $ 39.64万
  • 项目类别:
THE SEARCH FOR COVID-19 PREVENTION AND CURE: ADDRESSING THE CRITICAL ROLE OF INNATE/ADAPTIVE IMMUNITY BY INTEGRATING NOVEL INFORMATICS, TRANSLATIONAL TECHNOLOGIES, AND ONGOING CLINICAL TRIAL RESEARCH
寻找 COVID-19 的预防和治疗:通过整合新颖的信息学、翻译技术和正在进行的临床试验研究来解决先天/适应性免疫的关键作用
  • 批准号:
    10158982
  • 财政年份:
    2020
  • 资助金额:
    $ 39.64万
  • 项目类别:
Integrating Machine Learning and Genomic Approaches to Understand Cerebral Small Vessel Disease Pathogenesis from White Matter Hyperintensity Patterns
整合机器学习和基因组方法从白质高信号模式了解脑小血管疾病的发病机制
  • 批准号:
    10468866
  • 财政年份:
    2019
  • 资助金额:
    $ 39.64万
  • 项目类别:
Transcriptome-wide association studies and genetic risk prediction for breast cancer integrating RNA splicing and gene expression from multiple tissues
整合来自多个组织的 RNA 剪接和基因表达的乳腺癌全转录组关联研究和遗传风险预测
  • 批准号:
    10456122
  • 财政年份:
    2019
  • 资助金额:
    $ 39.64万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了