Statistical and Machine Learning Methods to Address Biomedical Challenges for Integrating Multi-view Data
解决生物医学集成多视图数据挑战的统计和机器学习方法
基本信息
- 批准号:10711864
- 负责人:
- 金额:$ 35.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-23 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectAlzheimer disease detectionAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease riskArea Under CurveBiologicalBiological MarkersCOVID-19Cardiovascular DiseasesCategoriesCerebrospinal FluidChronic Obstructive Pulmonary DiseaseClassificationClinicalCognitiveComplexCoupledDataDementiaDevelopmentDiagnosisDiseaseDisease ProgressionEarly DiagnosisEconomicsEthnic PopulationEtiologyFundingFutureGeneticGoalsGrantHeterogeneityImageIndividualInterventionMachine LearningMethodsModalityModelingMolecularMolecular DiseaseMolecular ProfilingOutcomePathway interactionsPhysiologyPositioning AttributePreventionProteomicsResearchRiskRisk FactorsSamplingSubgroupSystems BiologyTechniquesTrainingValidationVisualcandidate markerclinical decision-makingclinical riskcomputerized toolsdeep learningdisorder subtypehigh riskimaging geneticsindexinginnovationinsightinterestlearning strategylipidomicsmachine learning methodmetabolomicsmild cognitive impairmentmolecular markermolecular subtypesmultimodal datamultimodalitynovelpatient stratificationpersonalized carephenotypic datapolygenic risk scoreresponserisk stratificationsevere COVID-19socialstatistical and machine learningstatistical learningsuccesstranscriptome sequencing
项目摘要
Abstract
Alzheimer’s disease (AD) is a complex and heterogeneous condition that affects 5.8 million adults 65 years or
older in the U.S. AD is the most common cause of dementia and presents a substantial and increasing economic
and social burden. Our ability to diagnose and classify AD from cognitive normals (CN), or discriminate among
individuals with AD, early mild cognitive impairment [EMCI], or late mild cognitive impairment (LMCI), is essential
for the prevention, diagnosis, and treatment of AD. Since individuals with MCI have a high chance of converting
to AD, effectively discriminating between those who convert to AD (MCI-C) from those who do not convert (MCI-
NC) is important for early diagnosis of AD. The heterogeneity of AD has further motivated attempts to classify
distinct subgroups of AD to better inform the underlying physiology. There is evidence to suggest that using data
across multiple modalities (e.g. genetics, imaging, metabolomics) has potential to classify AD subgroups better
than using single modality. However, most AD studies that have used multimodal data have focused on imaging
data or imaging and genetics data only.
The purpose of this study is to innovatively apply state-of-the-art Machine learning (ML) and Deep Learning (DL)
methods we have developed to integrate genetics, imaging, metabolomics, lipidomics, and phenotypic data– from
NIAGADS– to better understand the etiology of AD. Our specific goals are: Aim 1 (a) Identify novel molecular
signatures and pathways likely differentiating AD cases from cognitively normal (CN), MCI converters [MCI-C] from
MCI non-converters[MCI-NC], using multimodal data; (b) Develop polygenic risk scores (PRS) and other molecular
risk scores to identify individuals at a higher risk for developing AD to aid in clinical decision making; Aim 2:
(a) Characterize molecular changes in AD progression and in ethnic groups [exploration study] and (b) Identify
homogeneous subgroups of AD characterized by subgroup-specific molecules and pathways. Although ML and
DL have been successfully used in AD research, their potential have not been fully harnessed.
The proposed research is feasible, promising and potentially significant to AD research. We expect to identify
i) molecular signatures and pathways conferring risk for, or protection against, AD ii) individuals at a higher risk
for developing AD and iii) AD molecular subgroups and subgroup-specific molecular biomarkers and pathways.
Ultimately, our findings have the potential to contribute to AD research by furthering our understanding of AD
mechanisms, refining personalized care, and enhancing our ability to identify targets for disease treatment.
摘要
阿尔茨海默病(AD)是一种复杂而多样的疾病,影响着580万65岁或以上的成年人
在美国,老年AD是痴呆症最常见的原因,并呈现出显著的和不断增长的经济
和社会负担。我们从认知正常(CN)中诊断和分类AD的能力,或区分
患有阿尔茨海默病、早期轻度认知障碍[EMCI]或晚期轻度认知障碍(LMCI)的人是必不可少的
用于预防、诊断和治疗阿尔茨海默病。因为患有MCI的人有很高的机会转换
到AD,有效地区分转换为AD的人(MCI-C)和不转换的人(MCI-C)
NC)对AD的早期诊断具有重要意义。AD的异质性进一步推动了分类的尝试
不同的AD亚群,以更好地了解潜在的生理学。有证据表明,使用数据
跨多种模式(例如,遗传学、成像、代谢组学)有可能更好地对AD亚组进行分类
而不是使用单一的医疗模式。然而,大多数使用多模式数据的AD研究都专注于成像
数据或仅限成像和遗传学数据。
本研究的目的是创新性地应用最新的机器学习和深度学习
我们已经开发了整合遗传学、成像、代谢组学、类脂组学和表型数据的方法-来自
NIAGADS-更好地了解AD的病因。我们的具体目标是:目标1(A)确定新的分子
可能区分AD病例和认知正常(CN)的特征和途径,MCI转换器[MCI-C]来自
MCI非转换者[MCI-NC],使用多模式数据;(B)开发多基因风险评分和其他分子
风险评分,以确定患AD风险较高的个人,以帮助临床决策;目标2:
(A)确定阿尔茨海默病进展和族裔群体中的分子变化[探索性研究]和(B)确定
AD的同质亚群,以亚群特有的分子和途径为特征。虽然ML和
DL已成功应用于AD研究,但其潜力尚未得到充分利用。
所提出的研究是可行的,有前景的,对AD的研究具有潜在的意义。我们希望能确定
一)分子签名和赋予AD风险或预防AD的途径二)风险较高的个人
用于开发AD和iii)AD分子亚群和亚群特有的分子生物标志物和途径。
最终,我们的发现有可能通过加深我们对AD的理解来为AD研究做出贡献
机制,完善个性化护理,并增强我们确定疾病治疗目标的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandra E Safo其他文献
Sandra E Safo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandra E Safo', 18)}}的其他基金
Statistical and Machine Learning Methods to Address Biomedical Challenges for Integrating Multi-view Data
解决生物医学集成多视图数据挑战的统计和机器学习方法
- 批准号:
10274846 - 财政年份:2021
- 资助金额:
$ 35.15万 - 项目类别:
MultiViewPortal: Towards a Scalable Web Application for Multiview Learning
MultiViewPortal:面向多视图学习的可扩展 Web 应用程序
- 批准号:
10827749 - 财政年份:2021
- 资助金额:
$ 35.15万 - 项目类别:
Statistical and Machine Learning Methods to Address Biomedical Challenges for Integrating Multi-view Data
解决生物医学集成多视图数据挑战的统计和机器学习方法
- 批准号:
10650831 - 财政年份:2021
- 资助金额:
$ 35.15万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 35.15万 - 项目类别:
Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 35.15万 - 项目类别:
Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 35.15万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 35.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 35.15万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 35.15万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 35.15万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 35.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 35.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 35.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




