BIOMECHANICS OF MICRO BLOOD VESSELS AND MICROCIRCULATION

微血管和微循环的生物力学

基本信息

  • 批准号:
    5213801
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

The objective of this research is to gain a better understanding of the dynamic role played by stress and strain on the remodeling and growth of the blood vessels. When blood pressure or flow is increased above the normal, changes occur in the blood vessel lumen, wall thickness, zero- stress state, fine structure of the intima, media and adventitia layers, geometry and dimensions of the endothelial and smooth muscle cells, the mechanical properties of the intima-media and adventitial layers, capillaries, and even branching patterns and total generation numbers. Hence our HYPOTHESIS: Stress and strain are important factors that determine blood vessel structure and function, together with chemical factors. We want to document their influence mathematically, with the following SPECIFIC AIMS: 1) To determine the effects of changing blood shear and blood pressure on the remodeling of the blood vessels and express them in the form of indicial functions. 2) To obtain data on the morphology, histology and experimental mechanics of vessels and use them to calculate the stress and strain distribution and determine the strain energy functions of the intima-media and adventitia layers which change in the remodeling process. 3) To demonstrate the applications of the results by solving some key problems of the heart. The biology of growth and remodeling should be studied at all levels from atoms to the whole animal. The scale of the level chosen for the present study is that of the tissue with a minimum dimension in the mu-m range. In this length scale, our RATIONALE is that the engineering approach is the most efficient, in which questions in physiology and medicine can be converted to boundary - value problems whose solutions can be tested experimentally. In the process, we correct a current deficiency in biomedical science: people really do not know how to compute stress and strain in the tissues of blood vessels. We will make an effort to give biomechanics a firm foundation.
本研究的目的是为了更好地了解 应力和应变在骨组织重塑和生长中的动态作用 血管 当血压或血流量增加到 正常情况下,血管腔发生变化,壁厚,零- 应力状态,内膜、中膜和外膜层的精细结构, 内皮细胞和平滑肌细胞的几何形状和尺寸, 内膜-中层和外膜层的机械性能, 毛细血管,甚至分支模式和总世代数。 因此,我们的假设:压力和应变是重要的因素, 确定血管结构和功能,以及化学 因素 我们想用数学的方法来记录他们的影响, 以下具体目的:1)确定改变血液的效果 剪切力和血压对血管重塑的影响, 以指数函数的形式表示。2)要获取有关 血管形态学、组织学和实验力学,并利用它们 计算应力和应变分布并确定应变 内-中膜和外膜层的能量函数, 重塑过程。3)演示结果的应用 通过解决心脏的一些关键问题。 生长的生物学, 重塑应该在从原子到整个动物的所有水平上进行研究。 本研究选择的水平尺度是组织尺度 其最小尺寸在μ m范围内。 在这个长度范围内,我们的 理由是工程方法是最有效的,其中 生理学和医学问题可以转化为边值问题 这些问题的解决方案可以通过实验来检验。 在这个过程中我们 纠正生物医学科学目前的一个缺陷:人们真的不知道 知道如何计算血管组织中的应力和应变。 我们 将努力为生物力学打下坚实的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YUAN-CHENG FUNG其他文献

YUAN-CHENG FUNG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YUAN-CHENG FUNG', 18)}}的其他基金

TISSUE REMODELING OF SMOOTH MUSCLE CELLS IN PULMONARY BLOOD VESSELS
肺血管平滑肌细胞的组织重塑
  • 批准号:
    7601065
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
TISSUE REMODELING OF SMOOTH MUSCLE CELLS IN PULMONARY BLOOD VESSELS
肺血管平滑肌细胞的组织重塑
  • 批准号:
    7358143
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
BIOMECHANICS OF MICRO BLOOD VESSELS AND MICROCIRCULATION
微血管和微循环的生物力学
  • 批准号:
    6600047
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
BIOMECHANICS OF MICRO BLOOD VESSELS AND MICROCIRCULATION
微血管和微循环的生物力学
  • 批准号:
    6610354
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
BIOMECHANICS OF MICRO BLOOD VESSELS AND MICROCIRCULATION
微血管和微循环的生物力学
  • 批准号:
    6202300
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
BIOMECHANICS OF MICRO BLOOD VESSELS AND MICROCIRCULATION
微血管和微循环的生物力学
  • 批准号:
    6110023
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
BIOMECHANICS OF MICRO BLOOD VESSELS AND MICROCIRCULATION
微血管和微循环的生物力学
  • 批准号:
    6242072
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
BIOMECHANICS OF MICRO BLOOD VESSELS AND MICROCIRCULATION
微血管和微循环的生物力学
  • 批准号:
    7070516
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
BIOMECHANICS OF MICRO BLOOD VESSELS AND MICROCIRCULATION
微血管和微循环的生物力学
  • 批准号:
    3736781
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:

相似海外基金

CAREER: Evolutionary biomechanics and functional morphology of salamander locomotion
职业:蝾螈运动的进化生物力学和功能形态
  • 批准号:
    2340080
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Cruising the whale superhighway: The evolution, biomechanics, and ecological drivers of migration in cetaceans
巡航鲸鱼高速公路:鲸目动物迁徙的进化、生物力学和生态驱动因素
  • 批准号:
    NE/Y000757/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
2024 Summer Biomechanics, Bioengineering, and Biotransport Conference; Lake Geneva, Wisconsin; 11-14 June 2024
2024年夏季生物力学、生物工程和生物运输会议;
  • 批准号:
    2413182
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Predictive Biomechanics for Modelling Gait Stability and Falls Prediction
用于步态稳定性和跌倒预测建模的预测生物力学
  • 批准号:
    DP240101449
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
  • 批准号:
    2338676
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator, Track M: TANDEM: Tensegrity-based Assistive aND rehabilitation Exosuits to complement human bioMechanics
NSF 融合加速器,轨道 M:TANDEM:基于张拉整体的辅助和康复外装,以补充人体生物力学
  • 批准号:
    2344385
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: The three-dimensional biomechanics of the grasping big toe among higher primates
博士论文研究:高等灵长类抓握大脚趾的三维生物力学
  • 批准号:
    2341368
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Material testing machine for biomechanics
生物力学材料试验机
  • 批准号:
    520201861
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
Stem cell/niche biomechanics in intestinal health and disease
肠道健康和疾病中的干细胞/利基生物力学
  • 批准号:
    2885708
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Determining the impact of lifestyle-related biomechanics on muscle in the ageing human arm
确定与生活方式相关的生物力学对衰老人类手臂肌肉的影响
  • 批准号:
    2899554
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了