Supporting Evidence-based Public Health Interventions using Text Mining

使用文本挖掘支持循证公共卫生干预措施

基本信息

  • 批准号:
    MR/L01078X/1
  • 负责人:
  • 金额:
    $ 83.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Evidence-based public health (EBPH) reviews play a central role in public health policy, practice and guidance. Their development currently involves first searching, then screening and synthesizing evidence from the vast amount of literature. Unlike systematic reviews, EBPH reviews require dynamic and multidimensional views of relevant information from the literature, without relying on a priori research questions. As a result, EBPH reviewing is a time consuming and resource intensive process that can take more than a year to complete. Since crucial information can be difficult to locate, and indeed understand given the complex nature of EBPH problems, the multiple causes and interrelations between interventions, diseases, populations and outcomes can remain hidden. This project will address these limitations by exploring new research methods, which combine text mining and machine learning to produce novel search while screening tools for public health reviews. Text mining methods will discover automatically knowledge from unstructured data and machine learning will support the prioritisation and ranking of the extracted information into meaningful topics. The combination of text mining and machine learning methods will reduce the burden of producing public health reviews which will be completed more quickly, thus meeting policy and practice timescales and increasing their cost efficiency. They also allow more timely and reliable reviews, thus improving decision making across the health sector. The project will be informed throughout by close interaction with the Centre of Public Health at NICE , who will also carry out qualitative and quantitative evaluation based on the implementation of a novel search while screening pilot system. Evaluation will be carried out on reviews related with non-communicable diseases related with prevention of hazardous and harmful drinking and excessive alcohol consumption. Moreover, given the national and international importance of EBPH reviewing, the project has developed a multistrand pathways to impact document to engage with a variety of key EBPH stakeholders both in the UK and internationally.
循证公共卫生(EBPH)审查在公共卫生政策,实践和指导中发挥着核心作用。其发展目前涉及首先搜索,然后筛选和综合大量文献的证据。与系统性综述不同,EBPH综述需要对文献中的相关信息进行动态和多维的观察,而不依赖于先验的研究问题。因此,EBPH审查是一个耗时和资源密集型的过程,可能需要一年多的时间才能完成。由于关键信息可能难以定位,而且鉴于EBPH问题的复杂性,实际上很难理解,因此干预措施、疾病、人口和结果之间的多重原因和相互关系可能仍然隐藏。该项目将通过探索新的研究方法来解决这些局限性,该方法将联合收割机文本挖掘和机器学习相结合,以产生新颖的搜索,同时为公共卫生评论筛选工具。文本挖掘方法将从非结构化数据中自动发现知识,机器学习将支持将提取的信息优先排序和排序为有意义的主题。文本挖掘和机器学习方法的结合将减少制作公共卫生评论的负担,这将更快地完成,从而满足政策和实践的时间表,并提高其成本效益。它们还允许进行更及时和可靠的审查,从而改善整个卫生部门的决策。该项目将通过与NICE公共卫生中心的密切互动来了解整个项目,该中心还将在实施新的搜索同时进行筛选试点系统的基础上进行定性和定量评估。将对与预防危险和有害饮酒及过度饮酒有关的非传染性疾病的审查进行评价。此外,鉴于EBPH审查在国家和国际上的重要性,该项目制定了一份多渠道影响文件,与英国和国际上的各种关键EBPH利益攸关方进行接触。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying the Informativeness of Similarity Measurements
  • DOI:
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Brockmeier;Tingting Mu;S. Ananiadou;J. Y. Goulermas
  • 通讯作者:
    A. Brockmeier;Tingting Mu;S. Ananiadou;J. Y. Goulermas
Topic detection using paragraph vectors to support active learning in systematic reviews.
  • DOI:
    10.1016/j.jbi.2016.06.001
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Hashimoto K;Kontonatsios G;Miwa M;Ananiadou S
  • 通讯作者:
    Ananiadou S
A cross-lingual similarity measure for detecting biomedical term translations.
  • DOI:
    10.1371/journal.pone.0126196
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Bollegala D;Kontonatsios G;Ananiadou S
  • 通讯作者:
    Ananiadou S
Supporting the annotation of chronic obstructive pulmonary disease (COPD) phenotypes with text mining workflows.
  • DOI:
    10.1186/s13326-015-0004-6
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Fu X;Batista-Navarro R;Rak R;Ananiadou S
  • 通讯作者:
    Ananiadou S
Mapping Phenotypic Information in Heterogeneous Textual Sources to a Domain-Specific Terminological Resource.
  • DOI:
    10.1371/journal.pone.0162287
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Alnazzawi N;Thompson P;Ananiadou S
  • 通讯作者:
    Ananiadou S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sophia Ananiadou其他文献

化学安全学習における周辺情報の提示に関する検討
化学品安全学习中外围信息呈现的研究
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kano;Yoshinobu;Ruben Dorado;Luke McCrohon;Sophia Ananiadou;Jun'ichi Tsujii;江木啓訓,松澤沙緒里,宗官祥史,品川徳秀,藤波香織
  • 通讯作者:
    江木啓訓,松澤沙緒里,宗官祥史,品川徳秀,藤波香織
"Integrated NLP Evaluation System for Pluggable Evaluation Metrics with Extensive Interoperable Toolkit (査読有)"
“用于可插入评估指标的集成 NLP 评估系统,具有广泛的可互操作工具包(同行评审)”
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshinobu Kano;Luke McCrohon;Sophia Ananiadou;and Jun'ichi Tsujii
  • 通讯作者:
    and Jun'ichi Tsujii
Integrated NLP Evaluation System for Pluggable Evaluation Metrics with Extensive Interoperable Toolkit (査読有)
用于可插入评估指标的集成 NLP 评估系统,具有广泛的可互操作工具包(同行评审)
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kano;Yoshinobu;Luke McCrohon;Sophia Ananiadou;Jun'ichi Tsujii
  • 通讯作者:
    Jun'ichi Tsujii
Analyzing Human Behaviors in an Interactive Art Installation
分析互动艺术装置中的人类行为
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kano;Yoshinobu;Paul Dobson;Mio Nakanishi;Jun'ichi Tsujii;Sophia Ananiadou;Takashi Kiriyama
  • 通讯作者:
    Takashi Kiriyama
Emotion detection for misinformation: A review
虚假信息的情绪检测:综述
  • DOI:
    10.1016/j.inffus.2024.102300
  • 发表时间:
    2024-07-01
  • 期刊:
  • 影响因子:
    15.500
  • 作者:
    Zhiwei Liu;Tianlin Zhang;Kailai Yang;Paul Thompson;Zeping Yu;Sophia Ananiadou
  • 通讯作者:
    Sophia Ananiadou

Sophia Ananiadou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sophia Ananiadou', 18)}}的其他基金

Japan Partnering Award. Text mining and bioinformatics platforms for metabolic pathway modelling.
日本合作伙伴奖。
  • 批准号:
    BB/P025684/1
  • 财政年份:
    2017
  • 资助金额:
    $ 83.55万
  • 项目类别:
    Research Grant
Enriching Metabolic PATHwaY models with evidence from the literature (EMPATHY)
利用文献证据丰富代谢路径模型 (EMPATHY)
  • 批准号:
    BB/M006891/1
  • 财政年份:
    2015
  • 资助金额:
    $ 83.55万
  • 项目类别:
    Research Grant
Mining the History of Medicine
挖掘医学史
  • 批准号:
    AH/L00982X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 83.55万
  • 项目类别:
    Research Grant
Automated Biological Event Extraction from the Literature for Drug Discovery
从药物发现文献中自动提取生物事件
  • 批准号:
    BB/G013160/1
  • 财政年份:
    2009
  • 资助金额:
    $ 83.55万
  • 项目类别:
    Research Grant
From text to pathways: text mining techniques for reconstructing signalling pathways
从文本到通路:用于重建信号通路的文本挖掘技术
  • 批准号:
    BB/G53025X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 83.55万
  • 项目类别:
    Research Grant
Tools for the text mining-based visualisation of the provenance of biochemical networks
基于文本挖掘的生化网络起源可视化工具
  • 批准号:
    BB/E004431/1
  • 财政年份:
    2007
  • 资助金额:
    $ 83.55万
  • 项目类别:
    Research Grant

相似海外基金

Supporting Mental Health in Young People: Integrated Methodology for cLinical dEcisions and evidence-based interventions
支持年轻人的心理健康:临床决策和循证干预的综合方法
  • 批准号:
    10072391
  • 财政年份:
    2023
  • 资助金额:
    $ 83.55万
  • 项目类别:
    EU-Funded
Evidence-Based Adaptation of Learning: Supporting Informed Decision-Making
基于证据的学习适应:支持知情决策
  • 批准号:
    RGPIN-2018-03834
  • 财政年份:
    2022
  • 资助金额:
    $ 83.55万
  • 项目类别:
    Discovery Grants Program - Individual
Evidence-Based Adaptation of Learning: Supporting Informed Decision-Making
基于证据的学习适应:支持知情决策
  • 批准号:
    RGPIN-2018-03834
  • 财政年份:
    2021
  • 资助金额:
    $ 83.55万
  • 项目类别:
    Discovery Grants Program - Individual
Evidence-Based Adaptation of Learning: Supporting Informed Decision-Making
基于证据的学习适应:支持知情决策
  • 批准号:
    RGPIN-2018-03834
  • 财政年份:
    2020
  • 资助金额:
    $ 83.55万
  • 项目类别:
    Discovery Grants Program - Individual
Evidence-Based Adaptation of Learning: Supporting Informed Decision-Making
基于证据的学习适应:支持知情决策
  • 批准号:
    RGPIN-2018-03834
  • 财政年份:
    2019
  • 资助金额:
    $ 83.55万
  • 项目类别:
    Discovery Grants Program - Individual
Developing an Evidence-Based Best-Practices Community for Supporting Low-Income High-Achieving Students in STEM Education and the Workforce
建立循证最佳实践社区,支持 STEM 教育和劳动力领域的低收入高成就学生
  • 批准号:
    1832942
  • 财政年份:
    2018
  • 资助金额:
    $ 83.55万
  • 项目类别:
    Standard Grant
Evidence-Based Adaptation of Learning: Supporting Informed Decision-Making
基于证据的学习适应:支持知情决策
  • 批准号:
    DGECR-2018-00421
  • 财政年份:
    2018
  • 资助金额:
    $ 83.55万
  • 项目类别:
    Discovery Launch Supplement
Evidence-Based Adaptation of Learning: Supporting Informed Decision-Making
基于证据的学习适应:支持知情决策
  • 批准号:
    RGPIN-2018-03834
  • 财政年份:
    2018
  • 资助金额:
    $ 83.55万
  • 项目类别:
    Discovery Grants Program - Individual
A Comprehensive Study of Nursing Schools in Japanese Universities Supporting Evidence Based Policy on Government's Nursing Training
日本大学护理学校支持政府护理培训循证政策的综合研究
  • 批准号:
    17K17397
  • 财政年份:
    2017
  • 资助金额:
    $ 83.55万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Supporting Evidence-Based Policy: a longitudinal study of AMR risk behaviours among livestock keeping communities in India and Kenya
支持循证政策:印度和肯尼亚畜牧社区抗菌素耐药性风险行为的纵向研究
  • 批准号:
    ES/P00492X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 83.55万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了