Enriching Metabolic PATHwaY models with evidence from the literature (EMPATHY)

利用文献证据丰富代谢路径模型 (EMPATHY)

基本信息

  • 批准号:
    BB/M006891/1
  • 负责人:
  • 金额:
    $ 75.68万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

In order to understand living systems, biologists have taken to generating predictive models of the system, allowing them to run computational experiments that reduce the number of more traditional, lab-based experiments that would previously be necessary to gain such an understanding. This approach follows that which is now commonplace in engineering, in which, for instance, aeronautical engineers will develop sophisticated models of aircraft and test safety aspects of the proposed design in a computer, long before developing the aircraft itself (or even putting it in a wind tunnel).This biological modelling approach is named "systems biology" and has been employed successfully in a number of areas. The focus of this proposal is in modelling metabolism. Metabolism is the collection of interconnected chemical reactions that allow cells to extract energy and material from the nutrients that they consume and to grow. All free-living organisms necessarily have such metabolic systems. Thus, modelling human metabolism will allow us to understand the human body's healthy state, for instance as a function of ageing, and aid in the design of chemicals (whether nutrients or drugs) that can maintain human health.In a similar vein, metabolic modelling is also being used in the development of cell factories, which are able to produce industrially relevant chemicals, which are commonly produced by the chemical industry through more traditional means, and often involve the use of oil as a feedstock. This approach (known as fermentation or "industrial biotechnology") is not new - we have been fermenting yeast cells to produce alcohol for thousands of years - but traditional fermentation improvements, lasting decades in the case of penicillins, involved random mutation and selection, often coupled to the incorporation of harmful 'passenger' mutations. However, recent research has shown that metabolic network modelling methods provide a rational approach, both for mature fermentations and for new ones such as bio-isoprene for sustainable car tyre production. Thus, these methods have great value for the sustainable bioproduction of important substances, such as biofuels and fine chemicals.Metabolic modelling therefore has much promise for health and environmental sustainability in this coming century. However, much of the information necessary for the building of these models is held in textbooks, patents and scientific journals, and large teams of researchers are required to search for, judge and extract this information before including it in the models. Thus, the traditional development of such models currently follows (and requires) a time consuming and expensive manual process. Modern methods allow this to be automated.This process of extracting information from the literature can be greatly facilitated by the application of the methods of text mining. Text mining applies sophisticated algorithms to recognise relevant terms and sentences buried in text, and can be trained to recognise those passages of text within a large number of documents that may be relevant to a given application.In this work, we will utilise text mining to extract information necessary for the construction of metabolic network models from the large number of scientific articles that are published daily. The results of these analyses will be presented to model developers, who will judge and extract this information to develop existing metabolic models further. A specific easy-to-use web application will be developed in order to allow a multiple users to contribute towards this model building process, irrespective of their background and previous experience of computational model building.The results of this work will be more complete metabolic models, which will allow researchers to improve understanding of metabolism in a range of organisms, and therefore use this increased knowledge in applications of health and environmental sustainability.
为了理解生命系统,生物学家已经开始生成系统的预测模型,使他们能够运行计算实验,从而减少了以前获得这种理解所必需的更传统的实验室实验的数量。这种方法沿用了现在工程学中常见的方法,例如,航空工程师将开发复杂的飞机模型,并在计算机中测试拟议设计的安全方面,这比开发飞机本身(甚至将其放入风洞)要早得多,这种生物建模方法被称为“系统生物学”,并已成功地应用于许多领域。该提案的重点是模拟新陈代谢。新陈代谢是相互关联的化学反应的集合,使细胞能够从它们消耗的营养物质中提取能量和物质并生长。所有自由生活的生物体都必然具有这样的代谢系统。因此,模拟人体新陈代谢将使我们能够了解人体的健康状态,例如作为衰老的函数,并有助于化学品的设计同样,代谢模型也被用于细胞工厂的开发,细胞工厂能够生产工业相关的化学品,其通常由化学工业通过更传统的方法生产,并且通常涉及使用油作为原料。这种方法(称为发酵或“工业生物技术”)并不新鲜-我们已经发酵酵母细胞生产酒精数千年-但传统的发酵改进,在青霉素的情况下持续了几十年,涉及随机突变和选择,通常与有害的“乘客”突变相结合。然而,最近的研究表明,代谢网络建模方法提供了一种合理的方法,既适用于成熟的发酵,也适用于新的发酵,如用于可持续汽车轮胎生产的生物异戊二烯。因此,这些方法对于重要物质的可持续生物生产具有很大的价值,例如生物燃料和精细化学品。因此,代谢模型在即将到来的世纪对健康和环境的可持续性具有很大的希望。然而,建立这些模型所需的大部分信息都存在于教科书、专利和科学期刊中,在将其纳入模型之前,需要大型研究团队搜索、判断和提取这些信息。因此,这种模型的传统开发目前遵循(并且需要)耗时且昂贵的手动过程。现代的方法可以使这一过程自动化,文本挖掘方法的应用可以极大地促进从文献中提取信息的过程。文本挖掘应用复杂的算法来识别隐藏在文本中的相关术语和句子,并且可以被训练来识别大量文档中可能与给定应用相关的文本段落。在这项工作中,我们将利用文本挖掘从每天发表的大量科学文章中提取构建代谢网络模型所需的信息。这些分析的结果将提交给模型开发人员,他们将判断和提取这些信息,以进一步开发现有的代谢模型。将开发一个特定的易于使用的网络应用程序,以便允许多个用户为这个模型构建过程做出贡献,而不管他们的背景和以前的计算模型构建经验如何。这项工作的结果将是更完整的代谢模型,这将使研究人员能够提高对一系列生物体代谢的理解,并因此在健康和环境可持续性的应用中使用这些知识。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GenerativeRE: Incorporating a Novel Copy Mechanism and Pretrained Model for Joint Entity and Relation Extraction
  • DOI:
    10.18653/v1/2021.findings-emnlp.182
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiarun Cao;S. Ananiadou
  • 通讯作者:
    Jiarun Cao;S. Ananiadou
Energetic Evolution of Cellular Transportomes
细胞转运体的能量进化
  • DOI:
    10.1101/218396
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Darbani B
  • 通讯作者:
    Darbani B
Energetic evolution of cellular Transportomes.
  • DOI:
    10.1186/s12864-018-4816-5
  • 发表时间:
    2018-05-30
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Darbani B;Kell DB;Borodina I
  • 通讯作者:
    Borodina I
Additional file 1: of Energetic evolution of cellular Transportomes
附加文件1:细胞运输组的能量进化
  • DOI:
    10.6084/m9.figshare.6395714
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Behrooz Darbani
  • 通讯作者:
    Behrooz Darbani
A Metabolic Reaction Balancing Web Service for Computational Systems Biology
计算系统生物学的代谢反应平衡 Web 服务
  • DOI:
    10.1101/187328
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dobson P
  • 通讯作者:
    Dobson P
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sophia Ananiadou其他文献

化学安全学習における周辺情報の提示に関する検討
化学品安全学习中外围信息呈现的研究
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kano;Yoshinobu;Ruben Dorado;Luke McCrohon;Sophia Ananiadou;Jun'ichi Tsujii;江木啓訓,松澤沙緒里,宗官祥史,品川徳秀,藤波香織
  • 通讯作者:
    江木啓訓,松澤沙緒里,宗官祥史,品川徳秀,藤波香織
"Integrated NLP Evaluation System for Pluggable Evaluation Metrics with Extensive Interoperable Toolkit (査読有)"
“用于可插入评估指标的集成 NLP 评估系统,具有广泛的可互操作工具包(同行评审)”
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshinobu Kano;Luke McCrohon;Sophia Ananiadou;and Jun'ichi Tsujii
  • 通讯作者:
    and Jun'ichi Tsujii
Integrated NLP Evaluation System for Pluggable Evaluation Metrics with Extensive Interoperable Toolkit (査読有)
用于可插入评估指标的集成 NLP 评估系统,具有广泛的可互操作工具包(同行评审)
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kano;Yoshinobu;Luke McCrohon;Sophia Ananiadou;Jun'ichi Tsujii
  • 通讯作者:
    Jun'ichi Tsujii
Analyzing Human Behaviors in an Interactive Art Installation
分析互动艺术装置中的人类行为
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kano;Yoshinobu;Paul Dobson;Mio Nakanishi;Jun'ichi Tsujii;Sophia Ananiadou;Takashi Kiriyama
  • 通讯作者:
    Takashi Kiriyama
Emotion detection for misinformation: A review
虚假信息的情绪检测:综述
  • DOI:
    10.1016/j.inffus.2024.102300
  • 发表时间:
    2024-07-01
  • 期刊:
  • 影响因子:
    15.500
  • 作者:
    Zhiwei Liu;Tianlin Zhang;Kailai Yang;Paul Thompson;Zeping Yu;Sophia Ananiadou
  • 通讯作者:
    Sophia Ananiadou

Sophia Ananiadou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sophia Ananiadou', 18)}}的其他基金

Japan Partnering Award. Text mining and bioinformatics platforms for metabolic pathway modelling.
日本合作伙伴奖。
  • 批准号:
    BB/P025684/1
  • 财政年份:
    2017
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Research Grant
Supporting Evidence-based Public Health Interventions using Text Mining
使用文本挖掘支持循证公共卫生干预措施
  • 批准号:
    MR/L01078X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Research Grant
Mining the History of Medicine
挖掘医学史
  • 批准号:
    AH/L00982X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Research Grant
Automated Biological Event Extraction from the Literature for Drug Discovery
从药物发现文献中自动提取生物事件
  • 批准号:
    BB/G013160/1
  • 财政年份:
    2009
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Research Grant
From text to pathways: text mining techniques for reconstructing signalling pathways
从文本到通路:用于重建信号通路的文本挖掘技术
  • 批准号:
    BB/G53025X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Research Grant
Tools for the text mining-based visualisation of the provenance of biochemical networks
基于文本挖掘的生化网络起源可视化工具
  • 批准号:
    BB/E004431/1
  • 财政年份:
    2007
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Research Grant

相似国自然基金

相似海外基金

Determination of Metabolic Pathway for Non-ionic Surfactant using Mass Spectrometry
质谱法测定非离子表面活性剂的代谢途径
  • 批准号:
    23K09772
  • 财政年份:
    2023
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unraveling the adaptive evolution of gut microbes through a novel metabolic pathway of a saccharide composing of host derived-mucin glycan
通过由宿主衍生的粘蛋白聚糖组成的糖类的新代谢途径揭示肠道微生物的适应性进化
  • 批准号:
    23KJ1259
  • 财政年份:
    2023
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Project 3: The AMPK Autophagy Pathway as a Metabolic Liability in Pancratic Ductal Adenocarcinoma
项目 3:AMPK 自噬途径作为胰腺导管腺癌的代谢负担
  • 批准号:
    10629065
  • 财政年份:
    2023
  • 资助金额:
    $ 75.68万
  • 项目类别:
Elucidation of the functional role of the HIS1/HSL family in the unknown strigolactone metabolic pathway
阐明 HIS1/HSL 家族在未知独脚金内酯代谢途径中的功能作用
  • 批准号:
    22H02270
  • 财政年份:
    2022
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on the efficient carbohydrate metabolic pathway: Screening and functional analysis of the key enzyme phosphorylase
碳水化合物高效代谢途径研究:关键酶磷酸化酶的筛选及功能分析
  • 批准号:
    22K05393
  • 财政年份:
    2022
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unravel a novel metabolic pathway orchestrating prostate cancer progression and therapeutic resistance
揭示协调前列腺癌进展和治疗耐药的新代谢途径
  • 批准号:
    10374340
  • 财政年份:
    2022
  • 资助金额:
    $ 75.68万
  • 项目类别:
Signaling in the crypt: a novel metabolic pathway in intestinal stem cells
隐窝信号传导:肠道干细胞的一种新代谢途径
  • 批准号:
    DP210103065
  • 财政年份:
    2022
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Discovery Projects
Poplar Salicinoids: understanding their metabolic network and biosynthetic pathway
杨树水杨苷类化合物:了解其代谢网络和生物合成途径
  • 批准号:
    546699-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
The role of the Hmgcs2-mediated ketogenic pathway in the metabolic plasticity of the heart
Hmgcs2介导的生酮途径在心脏代谢可塑性中的作用
  • 批准号:
    575026-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 75.68万
  • 项目类别:
    University Undergraduate Student Research Awards
BH4 metabolic pathway for orofacial pain and foundation for the new therapy
BH4治疗口面部疼痛的代谢途径及新疗法的基础
  • 批准号:
    22H03281
  • 财政年份:
    2022
  • 资助金额:
    $ 75.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了