Dynamic transcription factor function in control of pluripotent cell sub-states
控制多能细胞亚状态的动态转录因子功能
基本信息
- 批准号:MR/L018497/1
- 负责人:
- 金额:$ 227.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stem cells have two defining features; they can divide symmetrically to produce cells functionally identical to themselves and can specialise into the more mature cell types that carry out our bodies' functions, a process called differentiation. To preserve a functional stem cell population, self-renewal and differentiation must be balanced.The most versatile mammalian stem cell that can grow in the lab has the ability to differentiate into all adult body cells and is called a pluripotent stem cell. Recently, scientists have found that different types of mouse pluripotent stem cells can be grown in the lab; embryonic stem (ES) cells and epiblast stem cells (EpiSCs). In addition, work from our group has identified molecular heterogeneity within ES cell populations that is related to functional differences between the cells. Specifically, undifferentiated ES cells fluctuate between states in which they have high or low concentrations of a particular transcription factor, which we have named Nanog, and that have, respectively, a greater or lesser likelihood of self-renewal. This fluctuating alteration in the propensity of cells to differentiate may be crucial to balancing the opposing stem cell properties in a population. Therefore, understanding how these reversible states are controlled molecularly is likely to impinge on strategies for achieving predictable, uniform control of differentiation and is thus strategically important.In this research we will examine the function of pluripotency gene regulators at target genes that critically modulate self-renewal efficiency to determine how the pluripotent population is segregated into cells that self-renew efficiently and cells that have a higher likelihood of differentiation. We have identified a small set of 64 genes that alter transcription in response to Nanog activity and that represent good candidate mediators of Nanog function. We will ask how these 64 genes contribute to functional heterogeneity and how gene regulators control the corresponding genes.Aim 1: Test whether Nanog-sensitive genes can fully complement Nanog function. A prominent Nanog-sensitive target, Esrrb can complement several Nanog functions when added back to cells from which Nanog has been removed but cannot fully complement Nanog function. Therefore, we will test the ability of additional candidates to fully compensate for loss of Nanog in combinatorial assays.Several candidate genes are repressed by Nanog, so we will test the ability of reduction in the level of these candidates to compensate for loss of Nanog. Aim 2: Determine the biochemical function of pluripotency gene regulators.We will determine how Nanog fluctuations arise. We will localise gene regulators across the Nanog gene to determine which of these control Nanog and therefore potentially control partitioning between functional subtypes. We have found that Nanog protein represses the Nanog gene and we will ask how this happens to find out if simple rules govern how Nanog switches different genes on and off. Aim 3: Compare pluripotency gene regulator function in vivo and in pluripotent human cells.We will determine whether functional compensations occuring in culture also occur in the mouse embryo. Interestingly, some candidate regulators can reprogramme EpiSCs to an ES cell state. Human ES cells are more like mouse EpiSCs than mouse ES cells, so we will test the ability of our candidates to influence the growth properties of human ES cells. This could beneficially simplify and reduce the cost of human ES cell culture. This work will deliver a deeper, more refined understanding of the mechanisms of action of pluripotency gene regulators in cells in culture and in the embryo.
干细胞具有两个定义特征。它们可以对称地分裂以产生与自身相同的细胞,并可以专门研究执行我们身体功能的更成熟的细胞类型,这是一种称为分化的过程。为了保留功能性干细胞种群,必须平衡自我更新和分化。实验室中可以生长的最通用的哺乳动物干细胞具有分化为所有成年体细胞的能力,被称为多能干细胞。最近,科学家发现,实验室可以生长不同类型的小鼠多能干细胞。胚胎(ES)细胞和年份干细胞(EPISCS)。此外,我们小组的工作已经确定了ES细胞群体中与细胞之间功能差异有关的分子异质性。具体而言,未分化的ES细胞在其具有高浓度或低浓度的特定转录因子的状态之间波动,我们将其命名为Nanog,并且分别具有或多或少的自我更新可能性。细胞区分倾向的这种波动改变可能对平衡人群中对立的干细胞特性至关重要。因此,,了解这些可逆状态如何受到分子的控制,可能会影响实现可预测的,统一控制分化的策略,因此在战略上很重要。在这项研究中,我们将研究目标基因在目标基因上的功能,这些基因的功能具有严格的自我更新效率,以确定较高的细胞,从而使单个群体具有较高的细胞,从而使多个细胞具有高效的能力,从而使其具有高效的效率,使其具有高效的效率,使其具有高效的效率。分化。我们已经确定了一小部分64个基因,这些基因响应纳米活性而改变了转录,并且代表了纳米功能的良好候选介质。我们将询问这64个基因如何促进功能异质性以及基因调节剂如何控制相应的基因。IAM1:测试纳米敏感基因是否可以完全补充Nanog功能。 ESRRB是一个突出的Nanog敏感靶标,可以补充几个Nanog功能,然后将其添加到已删除Nanog的细胞中,但不能完全补充Nanog功能。因此,我们将测试其他候选者在组合测定中充分补偿Nanog损失的能力。几个候选基因受Nanog抑制,因此我们将测试这些候选者水平的降低能力,以补偿Nanog的损失。目标2:确定多能基因调节剂的生化功能。我们将确定纳米波动的发生方式。我们将在Nanog基因上定位基因调节剂,以确定这些控制Nanog中的哪一个,因此可能控制功能亚型之间的分区。我们发现Nanog蛋白会抑制Nanog基因,我们将询问如何确定简单规则是否控制Nanog如何开关和关闭不同的基因。 AIM 3:比较体内和多能性人体细胞中的多能基因调节函数。我们将确定在培养物中发生的功能补偿是否也发生在小鼠胚胎中。有趣的是,一些候选调节器可以将EPISC重新编程为ES细胞状态。人ES细胞更像小鼠EPISC,而不是小鼠ES细胞,因此我们将测试候选者影响人ES细胞生长特性的能力。这可以有益地简化并降低人类ES细胞培养的成本。这项工作将对培养物和胚胎中细胞中多能性基因调节剂的作用机理有更深入,更精致的理解。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic changes in Sox2 spatio-temporal expression promote the second cell fate decision through Fgf4/Fgfr2 signaling in preimplantation mouse embryos.
- DOI:10.1042/bcj20170418
- 发表时间:2018-03-20
- 期刊:
- 影响因子:0
- 作者:Mistri TK;Arindrarto W;Ng WP;Wang C;Lim LH;Sun L;Chambers I;Wohland T;Robson P
- 通讯作者:Robson P
Distinct Signaling Requirements for the Establishment of ESC Pluripotency in Late-Stage EpiSCs.
- DOI:10.1016/j.celrep.2016.03.073
- 发表时间:2016-04-26
- 期刊:
- 影响因子:8.8
- 作者:Illich DJ;Zhang M;Ursu A;Osorno R;Kim KP;Yoon J;Araúzo-Bravo MJ;Wu G;Esch D;Sabour D;Colby D;Grassme KS;Chen J;Greber B;Höing S;Herzog W;Ziegler S;Chambers I;Gao S;Waldmann H;Schöler HR
- 通讯作者:Schöler HR
Distinct SoxB1 networks are required for naïve and primed pluripotency.
- DOI:10.7554/elife.27746
- 发表时间:2017-12-19
- 期刊:
- 影响因子:7.7
- 作者:Corsinotti A;Wong FC;Tatar T;Szczerbinska I;Halbritter F;Colby D;Gogolok S;Pantier R;Liggat K;Mirfazeli ES;Hall-Ponsele E;Mullin NP;Wilson V;Chambers I
- 通讯作者:Chambers I
Phosphorylation of NANOG by casein kinase I regulates embryonic stem cell self-renewal.
- DOI:10.1002/1873-3468.13969
- 发表时间:2021-01
- 期刊:
- 影响因子:3.5
- 作者:Mullin NP;Varghese J;Colby D;Richardson JM;Findlay GM;Chambers I
- 通讯作者:Chambers I
Reprogramming Roadblocks Are System Dependent.
- DOI:10.1016/j.stemcr.2015.07.007
- 发表时间:2015-09-08
- 期刊:
- 影响因子:5.9
- 作者:Chantzoura E;Skylaki S;Menendez S;Kim SI;Johnsson A;Linnarsson S;Woltjen K;Chambers I;Kaji K
- 通讯作者:Kaji K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Chambers其他文献
Edinburgh Research Explorer Distinct Contributions of Tryptophan Residues within the Dimerization Domain to Nanog Function
爱丁堡研究探索者二聚化结构域内色氨酸残基对 Nanog 功能的独特贡献
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
N. Mullin;Alessia Gagliardi;Le Tran Phuc Khoa;Douglas Colby;E. Hall;Arthur J. Rowe;Ian Chambers;Findlay Greg - 通讯作者:
Findlay Greg
Listeriosis — a review of eighty‐four cases
李斯特菌病——八十四例病例回顾
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:11.4
- 作者:
Miriam L Paul;D. Dwyer;C. Chow;J. Robson;Ian Chambers;G. Eagles;V. Ackerman - 通讯作者:
V. Ackerman
Clinical audit for the need to process blood cultures signalling positive after-hours
- DOI:
10.1080/00313020701569980 - 发表时间:
2007-10-01 - 期刊:
- 影响因子:
- 作者:
Arthur J. Morris;Susan L. Taylor;Rosemary Ikram;Jeannie Botes;Jennifer Robson;Ian Chambers - 通讯作者:
Ian Chambers
Ian Chambers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Chambers', 18)}}的其他基金
A direct biochemical connection between the pluripotency regulator, NANOG and RNA Polymerase II
多能性调节剂 NANOG 和 RNA 聚合酶 II 之间的直接生化联系
- 批准号:
BB/T008644/1 - 财政年份:2020
- 资助金额:
$ 227.57万 - 项目类别:
Research Grant
Transcription factor control of dynamic transitions within and beyond pluripotency
多能性内外动态转变的转录因子控制
- 批准号:
MR/T003162/1 - 财政年份:2019
- 资助金额:
$ 227.57万 - 项目类别:
Research Grant
STARR-seq Analysis of Enhancer Function in Mouse Pluripotent Cells
小鼠多能细胞增强子功能的 STARR-seq 分析
- 批准号:
BB/R019274/1 - 财政年份:2018
- 资助金额:
$ 227.57万 - 项目类别:
Research Grant
Japan Partnering Award: Gene regulatory networks in stem cells and primordial germ cells
日本合作奖:干细胞和原始生殖细胞的基因调控网络
- 批准号:
BB/N022599/1 - 财政年份:2016
- 资助金额:
$ 227.57万 - 项目类别:
Research Grant
Pluripotency transcription factor function during primordial germ cell development
原始生殖细胞发育过程中的多能转录因子功能
- 批准号:
BB/L002736/1 - 财政年份:2014
- 资助金额:
$ 227.57万 - 项目类别:
Research Grant
Transcription factor dynamics in control of pluripotent cell function and identity
控制多能细胞功能和身份的转录因子动力学
- 批准号:
G0901533/1 - 财政年份:2011
- 资助金额:
$ 227.57万 - 项目类别:
Research Grant
相似国自然基金
缺氧诱导因子(HIF)-2α转录抑制树突状细胞CD36表达减轻肾脏缺血再灌注损伤的机制
- 批准号:82370751
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
转录因子BCL6抑制ICOSL表达优化生发中心反应的机制研究
- 批准号:82371745
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
转录因子LEF1低表达抑制HMGB1致子宫腺肌病患者子宫内膜容受性低下的分子机制
- 批准号:82371704
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
DNA碱基损伤修复酶OGG1调控NF-κB磷酸化修饰的作用及机制研究
- 批准号:31900557
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
NRF2对FOCAD基因在非小细胞肺癌中的表达调控及其机制分析
- 批准号:31900547
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Gene regulatory network control of olfactory cortex cell type specification
嗅觉皮层细胞类型规范的基因调控网络控制
- 批准号:
10656692 - 财政年份:2023
- 资助金额:
$ 227.57万 - 项目类别:
Multi-omic phenotyping of human transcriptional regulators
人类转录调节因子的多组学表型分析
- 批准号:
10733155 - 财政年份:2023
- 资助金额:
$ 227.57万 - 项目类别:
Predictive modeling of mammalian cell fate transitions over time and space with single-cell genomics
利用单细胞基因组学预测哺乳动物细胞命运随时间和空间转变的模型
- 批准号:
10572855 - 财政年份:2023
- 资助金额:
$ 227.57万 - 项目类别:
Integrated frameworks for single-cell epigenomics based transcriptional regulatory networks
基于单细胞表观基因组学的转录调控网络的集成框架
- 批准号:
10713209 - 财政年份:2023
- 资助金额:
$ 227.57万 - 项目类别:
Dynamic regulatory impact of human transposable elements on gene expression
人类转座元件对基因表达的动态调控影响
- 批准号:
10712515 - 财政年份:2023
- 资助金额:
$ 227.57万 - 项目类别: