Dynamic transcription factor function in control of pluripotent cell sub-states
控制多能细胞亚状态的动态转录因子功能
基本信息
- 批准号:MR/L018497/1
- 负责人:
- 金额:$ 227.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stem cells have two defining features; they can divide symmetrically to produce cells functionally identical to themselves and can specialise into the more mature cell types that carry out our bodies' functions, a process called differentiation. To preserve a functional stem cell population, self-renewal and differentiation must be balanced.The most versatile mammalian stem cell that can grow in the lab has the ability to differentiate into all adult body cells and is called a pluripotent stem cell. Recently, scientists have found that different types of mouse pluripotent stem cells can be grown in the lab; embryonic stem (ES) cells and epiblast stem cells (EpiSCs). In addition, work from our group has identified molecular heterogeneity within ES cell populations that is related to functional differences between the cells. Specifically, undifferentiated ES cells fluctuate between states in which they have high or low concentrations of a particular transcription factor, which we have named Nanog, and that have, respectively, a greater or lesser likelihood of self-renewal. This fluctuating alteration in the propensity of cells to differentiate may be crucial to balancing the opposing stem cell properties in a population. Therefore, understanding how these reversible states are controlled molecularly is likely to impinge on strategies for achieving predictable, uniform control of differentiation and is thus strategically important.In this research we will examine the function of pluripotency gene regulators at target genes that critically modulate self-renewal efficiency to determine how the pluripotent population is segregated into cells that self-renew efficiently and cells that have a higher likelihood of differentiation. We have identified a small set of 64 genes that alter transcription in response to Nanog activity and that represent good candidate mediators of Nanog function. We will ask how these 64 genes contribute to functional heterogeneity and how gene regulators control the corresponding genes.Aim 1: Test whether Nanog-sensitive genes can fully complement Nanog function. A prominent Nanog-sensitive target, Esrrb can complement several Nanog functions when added back to cells from which Nanog has been removed but cannot fully complement Nanog function. Therefore, we will test the ability of additional candidates to fully compensate for loss of Nanog in combinatorial assays.Several candidate genes are repressed by Nanog, so we will test the ability of reduction in the level of these candidates to compensate for loss of Nanog. Aim 2: Determine the biochemical function of pluripotency gene regulators.We will determine how Nanog fluctuations arise. We will localise gene regulators across the Nanog gene to determine which of these control Nanog and therefore potentially control partitioning between functional subtypes. We have found that Nanog protein represses the Nanog gene and we will ask how this happens to find out if simple rules govern how Nanog switches different genes on and off. Aim 3: Compare pluripotency gene regulator function in vivo and in pluripotent human cells.We will determine whether functional compensations occuring in culture also occur in the mouse embryo. Interestingly, some candidate regulators can reprogramme EpiSCs to an ES cell state. Human ES cells are more like mouse EpiSCs than mouse ES cells, so we will test the ability of our candidates to influence the growth properties of human ES cells. This could beneficially simplify and reduce the cost of human ES cell culture. This work will deliver a deeper, more refined understanding of the mechanisms of action of pluripotency gene regulators in cells in culture and in the embryo.
Stem cells have two defining features; they can divide symmetrically to produce cells functionally identical to themselves and can specialise into the more mature cell types that carry out our bodies' functions, a process called differentiation. To preserve a functional stem cell population, self-renewal and differentiation must be balanced.The most versatile mammalian stem cell that can grow in the lab has the ability to differentiate into all adult body cells and is called a pluripotent stem cell. Recently, scientists have found that different types of mouse pluripotent stem cells can be grown in the lab; embryonic stem (ES) cells and epiblast stem cells (EpiSCs). In addition, work from our group has identified molecular heterogeneity within ES cell populations that is related to functional differences between the cells. Specifically, undifferentiated ES cells fluctuate between states in which they have high or low concentrations of a particular transcription factor, which we have named Nanog, and that have, respectively, a greater or lesser likelihood of self-renewal. This fluctuating alteration in the propensity of cells to differentiate may be crucial to balancing the opposing stem cell properties in a population. Therefore, understanding how these reversible states are controlled molecularly is likely to impinge on strategies for achieving predictable, uniform control of differentiation and is thus strategically important.In this research we will examine the function of pluripotency gene regulators at target genes that critically modulate self-renewal efficiency to determine how the pluripotent population is segregated into cells that self-renew efficiently and cells that have a higher likelihood of differentiation. We have identified a small set of 64 genes that alter transcription in response to Nanog activity and that represent good candidate mediators of Nanog function. We will ask how these 64 genes contribute to functional heterogeneity and how gene regulators control the corresponding genes.Aim 1: Test whether Nanog-sensitive genes can fully complement Nanog function. A prominent Nanog-sensitive target, Esrrb can complement several Nanog functions when added back to cells from which Nanog has been removed but cannot fully complement Nanog function. Therefore, we will test the ability of additional candidates to fully compensate for loss of Nanog in combinatorial assays.Several candidate genes are repressed by Nanog, so we will test the ability of reduction in the level of these candidates to compensate for loss of Nanog. Aim 2: Determine the biochemical function of pluripotency gene regulators.We will determine how Nanog fluctuations arise. We will localise gene regulators across the Nanog gene to determine which of these control Nanog and therefore potentially control partitioning between functional subtypes. We have found that Nanog protein represses the Nanog gene and we will ask how this happens to find out if simple rules govern how Nanog switches different genes on and off. Aim 3: Compare pluripotency gene regulator function in vivo and in pluripotent human cells.We will determine whether functional compensations occuring in culture also occur in the mouse embryo. Interestingly, some candidate regulators can reprogramme EpiSCs to an ES cell state. Human ES cells are more like mouse EpiSCs than mouse ES cells, so we will test the ability of our candidates to influence the growth properties of human ES cells. This could beneficially simplify and reduce the cost of human ES cell culture. This work will deliver a deeper, more refined understanding of the mechanisms of action of pluripotency gene regulators in cells in culture and in the embryo.
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic changes in Sox2 spatio-temporal expression promote the second cell fate decision through Fgf4/Fgfr2 signaling in preimplantation mouse embryos.
- DOI:10.1042/bcj20170418
- 发表时间:2018-03-20
- 期刊:
- 影响因子:0
- 作者:Mistri TK;Arindrarto W;Ng WP;Wang C;Lim LH;Sun L;Chambers I;Wohland T;Robson P
- 通讯作者:Robson P
Distinct Signaling Requirements for the Establishment of ESC Pluripotency in Late-Stage EpiSCs.
- DOI:10.1016/j.celrep.2016.03.073
- 发表时间:2016-04-26
- 期刊:
- 影响因子:8.8
- 作者:Illich DJ;Zhang M;Ursu A;Osorno R;Kim KP;Yoon J;Araúzo-Bravo MJ;Wu G;Esch D;Sabour D;Colby D;Grassme KS;Chen J;Greber B;Höing S;Herzog W;Ziegler S;Chambers I;Gao S;Waldmann H;Schöler HR
- 通讯作者:Schöler HR
Phosphorylation of NANOG by casein kinase I regulates embryonic stem cell self-renewal.
- DOI:10.1002/1873-3468.13969
- 发表时间:2021-01
- 期刊:
- 影响因子:3.5
- 作者:Mullin NP;Varghese J;Colby D;Richardson JM;Findlay GM;Chambers I
- 通讯作者:Chambers I
Distinct SoxB1 networks are required for naïve and primed pluripotency.
- DOI:10.7554/elife.27746
- 发表时间:2017-12-19
- 期刊:
- 影响因子:7.7
- 作者:Corsinotti A;Wong FC;Tatar T;Szczerbinska I;Halbritter F;Colby D;Gogolok S;Pantier R;Liggat K;Mirfazeli ES;Hall-Ponsele E;Mullin NP;Wilson V;Chambers I
- 通讯作者:Chambers I
Functional Dissection of the Enhancer Repertoire in Human Embryonic Stem Cells.
- DOI:10.1016/j.stem.2018.06.014
- 发表时间:2018-08-02
- 期刊:
- 影响因子:23.9
- 作者:Barakat TS;Halbritter F;Zhang M;Rendeiro AF;Perenthaler E;Bock C;Chambers I
- 通讯作者:Chambers I
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Chambers其他文献
Edinburgh Research Explorer Distinct Contributions of Tryptophan Residues within the Dimerization Domain to Nanog Function
爱丁堡研究探索者二聚化结构域内色氨酸残基对 Nanog 功能的独特贡献
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
N. Mullin;Alessia Gagliardi;Le Tran Phuc Khoa;Douglas Colby;E. Hall;Arthur J. Rowe;Ian Chambers;Findlay Greg - 通讯作者:
Findlay Greg
Self-renewal of teratocarcinoma and embryonic stem cells
畸胎癌和胚胎干细胞的自我更新
- DOI:
10.1038/sj.onc.1207930 - 发表时间:
2004-09-20 - 期刊:
- 影响因子:7.300
- 作者:
Ian Chambers;Austin Smith - 通讯作者:
Austin Smith
Clinical audit for the need to process blood cultures signalling positive after-hours
- DOI:
10.1080/00313020701569980 - 发表时间:
2007-10-01 - 期刊:
- 影响因子:
- 作者:
Arthur J. Morris;Susan L. Taylor;Rosemary Ikram;Jeannie Botes;Jennifer Robson;Ian Chambers - 通讯作者:
Ian Chambers
Listeriosis — a review of eighty‐four cases
李斯特菌病——八十四例病例回顾
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:11.4
- 作者:
Miriam L Paul;D. Dwyer;C. Chow;J. Robson;Ian Chambers;G. Eagles;V. Ackerman - 通讯作者:
V. Ackerman
Mechanisms and factors in embryonic stem cell self-renewal
- DOI:
10.1007/bf02904758 - 发表时间:
2005-06-01 - 期刊:
- 影响因子:2.700
- 作者:
Ian Chambers - 通讯作者:
Ian Chambers
Ian Chambers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Chambers', 18)}}的其他基金
A direct biochemical connection between the pluripotency regulator, NANOG and RNA Polymerase II
多能性调节剂 NANOG 和 RNA 聚合酶 II 之间的直接生化联系
- 批准号:
BB/T008644/1 - 财政年份:2020
- 资助金额:
$ 227.57万 - 项目类别:
Research Grant
Transcription factor control of dynamic transitions within and beyond pluripotency
多能性内外动态转变的转录因子控制
- 批准号:
MR/T003162/1 - 财政年份:2019
- 资助金额:
$ 227.57万 - 项目类别:
Research Grant
STARR-seq Analysis of Enhancer Function in Mouse Pluripotent Cells
小鼠多能细胞增强子功能的 STARR-seq 分析
- 批准号:
BB/R019274/1 - 财政年份:2018
- 资助金额:
$ 227.57万 - 项目类别:
Research Grant
Japan Partnering Award: Gene regulatory networks in stem cells and primordial germ cells
日本合作奖:干细胞和原始生殖细胞的基因调控网络
- 批准号:
BB/N022599/1 - 财政年份:2016
- 资助金额:
$ 227.57万 - 项目类别:
Research Grant
Pluripotency transcription factor function during primordial germ cell development
原始生殖细胞发育过程中的多能转录因子功能
- 批准号:
BB/L002736/1 - 财政年份:2014
- 资助金额:
$ 227.57万 - 项目类别:
Research Grant
Transcription factor dynamics in control of pluripotent cell function and identity
控制多能细胞功能和身份的转录因子动力学
- 批准号:
G0901533/1 - 财政年份:2011
- 资助金额:
$ 227.57万 - 项目类别:
Research Grant
相似国自然基金
转录因子BCL6抑制ICOSL表达优化生发中心反应的机制研究
- 批准号:82371745
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
转录因子LEF1低表达抑制HMGB1致子宫腺肌病患者子宫内膜容受性低下的分子机制
- 批准号:82371704
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
锌指蛋白ZBTB17调控成纤维细胞衰老的机制研究
- 批准号:32000509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
细胞衰老抑制直接重编程及心肌再生修复的分子机理研究
- 批准号:92068107
- 批准年份:2020
- 资助金额:79.0 万元
- 项目类别:重大研究计划
转录因子SALL4通过影响pre-mRNA可变剪接调控非Yamanaka因子体细胞重编程的机制研究
- 批准号:32000502
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
DNA糖苷酶OGG1调节PARP1介导的EB病毒潜伏蛋白表达的机制研究
- 批准号:32000546
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CD10蛋白N-糖基化修饰介导PI3Kα活化诱导细胞衰老的分子机制研究
- 批准号:32000508
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
DNA碱基损伤修复酶OGG1调控NF-κB磷酸化修饰的作用及机制研究
- 批准号:31900557
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
核孔蛋白NUP62调控开花时间的分子机制
- 批准号:31970730
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
NRF2对FOCAD基因在非小细胞肺癌中的表达调控及其机制分析
- 批准号:31900547
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Decoding dynamic interplay between signaling and membranes in chemotaxis bymolecular actuators
通过分子致动器解码趋化中信号传导和膜之间的动态相互作用
- 批准号:
10846921 - 财政年份:2023
- 资助金额:
$ 227.57万 - 项目类别:
Dynamic regulatory impact of human transposable elements on gene expression
人类转座元件对基因表达的动态调控影响
- 批准号:
10712515 - 财政年份:2023
- 资助金额:
$ 227.57万 - 项目类别:
Decoding dynamic interplay between signaling and membranes in chemotaxis by molecular actuators
通过分子致动器解码趋化中信号传导和膜之间的动态相互作用
- 批准号:
10623376 - 财政年份:2023
- 资助金额:
$ 227.57万 - 项目类别:
Integrated mass spectrometry-based chemoproteomic and genomic technologies for studying dynamic kinase interactomes
基于集成质谱的化学蛋白质组学和基因组技术,用于研究动态激酶相互作用组
- 批准号:
10714921 - 财政年份:2023
- 资助金额:
$ 227.57万 - 项目类别:
Multiplexed analysis of secreted proteins from single-cells using high dynamic range nanovials
使用高动态范围纳米瓶对单细胞分泌蛋白进行多重分析
- 批准号:
10761557 - 财政年份:2023
- 资助金额:
$ 227.57万 - 项目类别:
Regulating the Quality and Potency of Stem Cells with Biophysical Cues from Dynamic Nanofibrous Hydrogels for Therapeutic Purposes
利用动态纳米纤维水凝胶的生物物理线索调节干细胞的质量和效力用于治疗目的
- 批准号:
10724060 - 财政年份:2023
- 资助金额:
$ 227.57万 - 项目类别:
Defining Mechanisms of Dynamic mTORC1 Regulation in the Liver with Fasting and Feeding
禁食和进食时肝脏动态 mTORC1 调节的定义机制
- 批准号:
10386461 - 财政年份:2022
- 资助金额:
$ 227.57万 - 项目类别:
The dynamic epigenetic domain identifies a novel transcription factor that regulates cancer cell progression
动态表观遗传域识别出调节癌细胞进展的新型转录因子
- 批准号:
22K07147 - 财政年份:2022
- 资助金额:
$ 227.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamic immune cell landscape in late-onset Alzheimer's disease: role of ApoE-mediated microglial lipid metabolism
晚发性阿尔茨海默病的动态免疫细胞景观:ApoE 介导的小胶质细胞脂质代谢的作用
- 批准号:
10370588 - 财政年份:2022
- 资助金额:
$ 227.57万 - 项目类别:
Single cell, genome wide dissection of dynamic transcription factor regulation
单细胞、全基因组动态转录因子调控的剖析
- 批准号:
10538121 - 财政年份:2022
- 资助金额:
$ 227.57万 - 项目类别:














{{item.name}}会员




