The Apical Complex: a Targeted Investigation of the Molecular Functions of this Structure Essential to Apicomplexan Parasite Invasion and Replication.
顶端复合体:对顶端复合体寄生虫入侵和复制所必需的该结构的分子功能进行有针对性的研究。
基本信息
- 批准号:MR/M011690/1
- 负责人:
- 金额:$ 57.44万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Apicomplexans are a large group of single-celled pathogens that cause significant disease in humans. The most notorious member of this group causes malaria, a devastating disease in many developing regions of the world and responsible for over 500 million cases, and 0.6 million deaths per year. Other apicomplexan species cause widespread human diseases: cryptosporidiosis, a leading cause of fatal infant diarrhoea; and toxoplasmosis, which infects approximately 30% of all humans. Further, several apicomplexans infected domesticated animals causing significant loss to human food production.All apicomplexans cause disease by growing and dividing within the cells of their human (or animal) hosts. They enter their host's cells by non-destructively forming a temporary pore in the host cell wall, through which they slide in and then reseal. By keeping the host cell alive it provides a constant source of food and nutrients to the parasite. Only once the parasites have divided to many times the original number do they burst open and kill the human cell, and then actively seek out and invade new host cells.The key structure used by the pathogen during invasion of the host's cells is a structure called the apical complex, and this is a shared feature of all apicomplexan pathogens. The apical complex can be observed using microscopes as an internally reinforced point at the tip of the cell that acts as a cellular nozzle or syringe. At its apex is a small opening, through which it first releases sticky molecules onto the pathogens surface that help it adhere to its host's cells. Subsequently, it uses this opening to inject invasion factors directly into its host that create the invasion pore through which it enters the host. Further pathogen molecules are then released from the apical complex that enable it to feed on its host. Thus, the apical complex is at the heart of these coordinated events of host cell invasion, and is therefore an essential structure for disease formation.Despite the importance of the apical complex, this structure remains poorly understood. Few of the molecular components are known, and this limits understanding of its architecture, assembled, and how it provides the general functions that it does. This study will use multiple approaches to identify and catalogue the molecular components of the apical complex. It will employ the apicomplexan Toxoplasma as the best developed experimental system for apicomplexans. A detailed model of the architecture of the apical complex will be generated, and using genetic tagging of individual structural components, their assembly and behaviour will be characterised in live cells, including during the invasion events. The function of the individual components, and of the apical complex as a whole, will then be dissected by selectively removing one component at a time at a genetic level. This will provide a mechanistic understanding of how the apical complex achieves the deadly tasks of host cell penetration and exploitation.An integrated understanding of the apical complex organisation and function will provide clearer insights into how apicomplexan organisms have achieved such success as pathogens. Moreover, understanding their mechanisms of pathogenesis provides the best opportunity for strategically designing disease treatment strategies.
顶复门是一大群单细胞病原体,在人类中引起重大疾病。这一组中最臭名昭著的成员引起疟疾,这是世界上许多发展中地区的一种毁灭性疾病,每年造成5亿多病例和60万人死亡。其他apicomplexan物种引起广泛的人类疾病:隐孢子虫病,致命的婴儿腹泻的主要原因;弓形虫病,感染约30%的人类。此外,一些顶复门感染家养动物,导致人类粮食生产的重大损失。所有顶复门都通过在其人类(或动物)宿主的细胞内生长和分裂而引起疾病。它们通过非破坏性地在宿主细胞壁上形成一个临时孔进入宿主细胞,通过这个孔它们滑进去,然后重新密封。通过保持宿主细胞存活,它为寄生虫提供了恒定的食物和营养来源。只有当寄生虫分裂到原来数量的许多倍时,它们才会突然打开并杀死人体细胞,然后积极寻找并入侵新的宿主细胞。病原体在入侵宿主细胞时使用的关键结构是一种称为顶端复合体的结构,这是所有顶端复合体病原体的共同特征。顶端复合体可以用显微镜观察到,作为细胞尖端的内部加强点,充当细胞喷嘴或注射器。在它的顶端是一个小开口,它首先通过这个开口将粘性分子释放到病原体表面,帮助它粘附在宿主细胞上。随后,它利用这个开口将侵入因子直接注入其宿主,从而产生侵入孔,通过该孔进入宿主。然后从顶端复合体释放出更多的病原体分子,使其能够以宿主为食。因此,顶端复合体是这些宿主细胞入侵的协调事件的核心,因此是疾病形成的必要结构。尽管顶端复合体的重要性,这种结构仍然知之甚少。很少有分子组分是已知的,这限制了对其结构、组装以及如何提供其一般功能的理解。本研究将使用多种方法来识别和编目顶端复合物的分子组分。它将采用顶复门弓形虫作为顶复门的最佳开发的实验系统。将生成顶端复合体结构的详细模型,并使用单个结构组件的遗传标记,它们的组装和行为将在活细胞中进行表征,包括在入侵事件期间。然后,通过在遗传水平上一次选择性地去除一个组分,将单个组分的功能以及顶端复合体作为一个整体的功能进行解剖。这将提供一个机械的理解,顶端复合体如何实现致命的任务,宿主细胞的渗透和exploitation.A顶端复合体的组织和功能的综合理解将提供更清晰的见解apicomplexan生物如何取得了这样的成功,病原体。此外,了解其发病机制为战略性设计疾病治疗策略提供了最佳机会。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Comprehensive Subcellular Atlas of the Toxoplasma Proteome via hyperLOPIT Provides Spatial Context for Protein Functions.
- DOI:10.1016/j.chom.2020.09.011
- 发表时间:2020-11-11
- 期刊:
- 影响因子:30.3
- 作者:Barylyuk K;Koreny L;Ke H;Butterworth S;Crook OM;Lassadi I;Gupta V;Tromer E;Mourier T;Stevens TJ;Breckels LM;Pain A;Lilley KS;Waller RF
- 通讯作者:Waller RF
Two essential Thioredoxins mediate apicoplast biogenesis, protein import, and gene expression in Toxoplasma gondii.
- DOI:10.1371/journal.ppat.1006836
- 发表时间:2018-03
- 期刊:
- 影响因子:6.7
- 作者:Biddau M;Bouchut A;Major J;Saveria T;Tottey J;Oka O;van-Lith M;Jennings KE;Ovciarikova J;DeRocher A;Striepen B;Waller RF;Parsons M;Sheiner L
- 通讯作者:Sheiner L
A Pentatricopeptide Repeat Protein in the Plasmodium apicoplast is essential and shows sequence-specific RNA binding
疟原虫顶质体中的五肽重复蛋白是必需的,并且显示出序列特异性 RNA 结合
- DOI:10.1101/388728
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Hicks J
- 通讯作者:Hicks J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ross Waller其他文献
Ross Waller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
- 批准号:32370337
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
- 批准号:31971055
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
- 批准号:31872651
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
边缘鳞盖蕨复合体种 (Microlepia marginata complex) 的网状进化及物种形成研究
- 批准号:31860044
- 批准年份:2018
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
益气通络颗粒及主要单体通过调节cAMP/PKA/Complex I通路治疗气虚血瘀证脑梗死的机制研究
- 批准号:81703747
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
生物钟转录抑制复合体 Evening Complex 调控茉莉酸诱导叶片衰老的分子机制研究
- 批准号:31670290
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
延伸子复合物(Elongator complex)的翻译调控作用
- 批准号:31360023
- 批准年份:2013
- 资助金额:51.0 万元
- 项目类别:地区科学基金项目
Complex I 基因变异与寿命的关联及其作用机制的研究
- 批准号:81370445
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Active Particles in Complex Environments: from the transport of microorganisms to targeted drug delivery
复杂环境中的活性颗粒:从微生物运输到靶向药物输送
- 批准号:
2902827 - 财政年份:2023
- 资助金额:
$ 57.44万 - 项目类别:
Studentship
MICA: Towards targeted treatment for complex regional pain syndrome through determination of the underlying molecular mechanisms
MICA:通过确定潜在的分子机制来靶向治疗复杂的区域疼痛综合征
- 批准号:
MR/W027240/1 - 财政年份:2022
- 资助金额:
$ 57.44万 - 项目类别:
Research Grant
CAREER: Developing electrically charged biomaterials for targeted drug delivery to negatively charged complex tissue environments
职业:开发带电生物材料,用于将靶向药物输送到带负电的复杂组织环境
- 批准号:
2141841 - 财政年份:2022
- 资助金额:
$ 57.44万 - 项目类别:
Continuing Grant
The fabrication of complex structures using biodegradable polymerised high internal phase emulsion (PolyHIPE) scaffolds for targeted drug delivery
使用可生物降解的聚合高内相乳液 (PolyHIPE) 支架制造复杂结构,用于靶向药物输送
- 批准号:
2729103 - 财政年份:2022
- 资助金额:
$ 57.44万 - 项目类别:
Studentship
Targeted Protein Degradation: From Small Molecules to Complex Organelles
靶向蛋白质降解:从小分子到复杂细胞器
- 批准号:
10237082 - 财政年份:2021
- 资助金额:
$ 57.44万 - 项目类别:
Collaborative Research: Targeted neurosteroidogenesis and complex memory function
合作研究:靶向神经类固醇生成和复杂记忆功能
- 批准号:
2050260 - 财政年份:2021
- 资助金额:
$ 57.44万 - 项目类别:
Standard Grant
Collaborative Research: Targeted neurosteroidogenesis and complex memory function
合作研究:靶向神经类固醇生成和复杂记忆功能
- 批准号:
2050230 - 财政年份:2021
- 资助金额:
$ 57.44万 - 项目类别:
Standard Grant
The development of periodontal and endodontal tissue regenetation targeted amelogenin/GRP78 complex
牙周和牙髓组织再生靶向釉原蛋白/GRP78复合物的开发
- 批准号:
20K09958 - 财政年份:2020
- 资助金额:
$ 57.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a novel therapeutic method for liver fibrosis by introducing siRNA using a liver-targeted ternary complex
使用肝脏靶向三元复合物引入 siRNA 开发肝纤维化新治疗方法
- 批准号:
20K12649 - 财政年份:2020
- 资助金额:
$ 57.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
18 BTT EAGER - Engineering complex traits using targeted, multiplexed genetic and epigenetic mutagenesis
18 BTT EAGER - 使用定向、多重遗传和表观遗传诱变设计复杂性状
- 批准号:
BB/S020853/1 - 财政年份:2019
- 资助金额:
$ 57.44万 - 项目类别:
Research Grant