BIOLOGICAL FUSIONS--CONJUGATION IN YEAST
生物融合——酵母中的接合
基本信息
- 批准号:2900683
- 负责人:
- 金额:$ 36.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1984
- 资助国家:美国
- 起止时间:1984-07-01 至 2001-03-31
- 项目状态:已结题
- 来源:
- 关键词:Candida albicans Saccharomyces cerevisiae actins biological signal transduction cell fusion cytogenetics cytoskeleton developmental genetics fungal genetics gene expression gene mutation gene targeting genetic regulatory element histogenesis laboratory mouse microorganism conjugation microorganism sexual dimorphism mitogen activated protein kinase nucleic acid sequence pathologic process phosphorylation polymerase chain reaction restriction endonucleases transcription factor yeast two hybrid system
项目摘要
This proposal focuses on the genetic control of morphogenesis in the
fungus Saccharomyces cerevisiae. The most striking change in shape--the
conversion of a round yeast cell to a long narrow filamentous form has
important implications for human disease. The long thin cells continue
to divide and, remaining attached, form a chain of connected cells or
pseudohypha that can penetrate the surrounding medium. This dimorphic
shift from yeast to filament, common to many fungi pathogenic for humans
(C.albicans, D.neoformans, and H.capsulatum) can now be unraveled by
applying the sophisticated genetic techniques available in Saccharomyces
but lacking in its pathogens. The genes required for pseudohyphal
formation PHD, will be cloned, sequenced and used to create mutations
that block the conversion of the yeast to the filamentous form. The
pathway for pseudohyphal growth will be reconstructed using both the
naturally occurring mutations found in lab stocks (phd5,6,7 in S288C) in
combination with cloned genes that cause pseudohyphal formation when over
expressed. The structure of the pseudohypha in wild type and the phd
mutants will be examined both by light and electron microscopy. The PHD4
gene, which caused adherence to plastic, will be analyzed by molecular
and cell biological techniques and for adherence to endothelial cells,
since adherence is thought to play an important role in deep tissue
invasion by fungi. The second morphogenetic process to be analyzed is
cell fusion during mating. High resolution time lapse microscopy yeast
conjugation will be used to reconstruct the sequence of events in the
fusion process. Key to the unraveling of this pathway will be the
analysis of cell fusion mutants fus 1,2,4,5,6,and 7 and a gene required
for nuclear fusion, BIK1. BIK1 contains distinct functional domains, the
aminoterminus for microtubule association and the carboxyterminus for
nuclear fusion. The dual functions of BIK1p will be dissected by using
biochemical methods, cytological localization of BIK1, the binding of
BIK1p to microtubules and the characterization of genes that are
synthetic lethals with deltabik1 (slbl, 2 and 3). Our work focuses on
the transduction of two external signals key to the activation of the
fusion pathway, mating pheromone and Ca +2. Mutations in FUS3 (encoding
a protein kinase required both for signal transduction and G1 arrest)
that cause constitutive activation of the signal transduction pathway in
the absence of pheromone will be used to determine the role of
phosphorylation of FUS3p in signal transduction. Experiments are
designed to determine whether these mutants are hyperphosphorylated and,
is so, how FUS3p becomes phosphorylated and dephosphorylated. Genes
which mediate the pheromone stimulated Ca+2 requirement, PCR, together
with the genes encoding the plasma membrane (PMC1) and vacuolar calcium
pumps (PMR1) will be used to reconstruct the role of calcium in the
important membrane reorganizations that take place during conjugation.
这项建议的重点是遗传控制的形态发生在
真菌酿酒酵母 最引人注目的形状变化--
将圆形酵母细胞转化为细长丝状形式,
对人类疾病的重要影响。 细长的细胞继续
分裂并保持附着,形成一串相连的细胞,
能穿透周围介质的假菌丝。 这种二态性
从酵母菌转变为丝状菌,常见于许多人类致病真菌
(白色念珠菌、新型念珠菌和荚膜梭菌)现在可以通过以下方法来解开:
应用酵母菌中先进的遗传技术
但缺乏病原体 假菌丝所需的基因
形成PHD,将被克隆,测序,并用于创建突变
阻止酵母转化为丝状形式。 的
假菌丝生长的途径将重建使用这两个
在实验室储备中发现的天然突变(S288 C中的phd 5、6、7),
与克隆基因的组合,当超过时引起假菌丝形成
表达。 野生型和PHD假菌丝的结构
将通过光学和电子显微镜检查突变体。 PHD4
基因,导致粘附塑料,将分析分子
和细胞生物学技术以及粘附于内皮细胞,
由于粘附被认为在深部组织中起重要作用
真菌入侵。 要分析的第二个形态发生过程是
交配过程中的细胞融合 高分辨率时间推移显微镜酵母
共轭将被用来重建事件的顺序,
聚变过程 解开这条途径的关键是
细胞融合突变体fus 1、2、4、5、6和7的分析和所需基因
用于核聚变BIK 1。 BIK 1包含不同的功能结构域,
氨基末端用于微管结合,羧基末端用于微管结合。
核聚变 BIK 1 p的双重功能将通过使用
生物化学方法,BIK 1的细胞学定位,
BIK 1 p对微管的作用以及
用deltabik 1(slb 1,2和3)合成致死。 我们的工作重点是
两个外部信号的转导是激活
融合途径、交配信息素和Ca +2。 FUS 3突变(编码
信号转导和G1期阻滞所需的蛋白激酶)
导致细胞内信号转导通路的组成性激活,
信息素的缺乏将被用来确定的作用
FUS 3 p在信号转导中的磷酸化。 实验
旨在确定这些突变体是否过度磷酸化,
FUS 3 p如何磷酸化和去磷酸化。 基因
它们共同介导信息素刺激的Ca+2需求,PCR,
与编码质膜(PMC 1)和液泡钙的基因
泵(PMR 1)将被用来重建钙的作用,
在接合过程中发生的重要的膜重组。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GERALD R FINK其他文献
GERALD R FINK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GERALD R FINK', 18)}}的其他基金
GENETIC CONTROL OF NUTRITIONAL STARVATION IN YEAST
酵母营养饥饿的基因控制
- 批准号:
6046024 - 财政年份:1984
- 资助金额:
$ 36.97万 - 项目类别:
GENETIC CONTROL OF NUTRITIONAL STARVATION IN YEAST
酵母营养饥饿的基因控制
- 批准号:
6625046 - 财政年份:1984
- 资助金额:
$ 36.97万 - 项目类别:
相似国自然基金
基于菌体蛋白泄漏探究超高压对酿酒酵母Saccharomyces cerevisiae烯醇化酶致敏性的影响
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
Saccharomyces cerevisiae NJWGYH30566产赤藓糖醇的辅酶工程及调控机理
- 批准号:31171644
- 批准年份:2011
- 资助金额:64.0 万元
- 项目类别:面上项目
3-甲硫基丙醇的Saccharomyces cerevisiae关键代谢分子调控机制研究
- 批准号:31071593
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
新疆慕萨莱思Saccharomyces cerevisiae发酵特性研究
- 批准号:31060223
- 批准年份:2010
- 资助金额:27.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Stress response mechanism regulated by the exonic promoter of Saccharomyces cerevisiae HKR1
酿酒酵母HKR1外显子启动子调控的应激反应机制
- 批准号:
23K04994 - 财政年份:2023
- 资助金额:
$ 36.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
- 批准号:
10735074 - 财政年份:2023
- 资助金额:
$ 36.97万 - 项目类别:
Saccharomyces cerevisiae microtubule and kinetochore dynamics
酿酒酵母微管和动粒动力学
- 批准号:
10623066 - 财政年份:2023
- 资助金额:
$ 36.97万 - 项目类别:
Regulation of lipid biosynthesis in Saccharomyces cerevisiae
酿酒酵母脂质生物合成的调控
- 批准号:
RGPIN-2021-02898 - 财政年份:2022
- 资助金额:
$ 36.97万 - 项目类别:
Discovery Grants Program - Individual
Les paralogues RPS18A et RPS18B de la levure Saccharomyces cerevisiae
酿酒酵母旁系同源物 RPS18A 和 RPS18B
- 批准号:
572139-2022 - 财政年份:2022
- 资助金额:
$ 36.97万 - 项目类别:
University Undergraduate Student Research Awards
Genetic and biochemical analysis of the Hsp90 system in Saccharomyces cerevisiae
酿酒酵母 Hsp90 系统的遗传和生化分析
- 批准号:
RGPIN-2019-04967 - 财政年份:2022
- 资助金额:
$ 36.97万 - 项目类别:
Discovery Grants Program - Individual
Dissecting the influence of genetic background on aneuploidy tolerance in the model eukaryote Saccharomyces cerevisiae
剖析遗传背景对模型真核生物酿酒酵母非整倍体耐受性的影响
- 批准号:
10667621 - 财政年份:2022
- 资助金额:
$ 36.97万 - 项目类别:
Screening of the proteins involved in uptake of ubiquinone in Saccharomyces cerevisiae using synthetic ubiquinone probes
使用合成泛醌探针筛选酿酒酵母中参与泛醌摄取的蛋白质
- 批准号:
22H02273 - 财政年份:2022
- 资助金额:
$ 36.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optimisation d'un système d'échafaudage protéique pour améliorer l'orthogonalité et l'efficacité des circuits synthétiques dans Saccharomyces cerevisiae par la reconstruction de séquence ancestrale.
酿酒酵母电路合成技术的正交系统优化和效率优化
- 批准号:
569114-2022 - 财政年份:2022
- 资助金额:
$ 36.97万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Unveiling the Role of EAF1 in the Regulation of Nuclear Flares and Lipid Synthesis in Saccharomyces cerevisiae.
揭示 EAF1 在酿酒酵母核耀斑和脂质合成调节中的作用。
- 批准号:
559745-2021 - 财政年份:2022
- 资助金额:
$ 36.97万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral