Dissecting the influence of genetic background on aneuploidy tolerance in the model eukaryote Saccharomyces cerevisiae
剖析遗传背景对模型真核生物酿酒酵母非整倍体耐受性的影响
基本信息
- 批准号:10667621
- 负责人:
- 金额:$ 30.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AneuploidyArchitectureCellsChromosome MappingChromosome SegregationChromosomesDNADevelopmentDissectionDown SyndromeDrug Metabolic DetoxicationDrug resistanceEukaryotaEvolutionExpression LibraryGene DuplicationGenesGeneticGenetic VariationGenetic studyGenotypeHealthHumanHuman BiologyIndividualInfertilityKaryotypeLaboratoriesLaboratory StudyMalignant NeoplasmsMammalian CellMapsMeasuresMethodsModelingMolecularMutationOrganismPharmaceutical PreparationsPhenotypePhylogenyPhysiologicalPlayPopulation GeneticsProductionProteinsRoleSaccharomyces cerevisiaeSaccharomycetalesStressSyndromeSystemTestingTimeVariantYeastscancer therapycomparative genomicscostdesigndevelopmental diseasedrug resistant pathogenemerging pathogenfitnessfunctional genomicsgenetic architecturehuman pathogeninnovationinsightnon-Nativeoverexpressionpathogenic fungusproteostasisrare varianttumoryeast genetics
项目摘要
ABSTRACT
Chromosome segregation errors can produce cells with an incorrect number of one or more chromosomes,
known as aneuploidy. Aneuploidy is therefore a special class of mutation that can have immediate phenotypic
effects. Although aneuploidy is detrimental during mammalian development, it is common in many cancers
and a driver in the evolution of drug resistant tumors and fungal pathogens. A major unaddressed question is
the degree to which different individuals vary in their ability to tolerate aneuploidy. Understanding how genetic
differences influence aneuploidy tolerance has far reaching implications for genetics, human biology, and
evolution. But studying this topic mammalian systems is extremely challenging, since it is not possible to
systematically manipulate karyotypes in a large number of genetic backgrounds. Here we will address the
fundamental question of how genetic variation influences the ability of cells to tolerate chromosome
duplications, in the model eukaryote Saccharomyces cerevisiae. Using the power of yeast genetics, we
adapted a method to duplicate specific yeast chromosomes in the near absence of selection. We will apply
this method to explore the breadth and mechanisms of genetic variation in tolerating chromosome duplications
(herein referred to as aneuploidy). Aim 1 will use this approach to duplicate each of the 16 chromosomes in
yeast, in dozens of non-laboratory strains across the yeast phylogeny. Results will characterize the range of
natural variation in aneuploidy tolerance and will test if this variation occurs sporadically due to rare alleles or
persists across many strains within specific lineages. Preliminary results suggest lineage-specific variation in
aneuploidy tolerance. Aim 2 will test if variations in aneuploidy sensitivity are due to differences in
“generalized” aneuploidy tolerance, in which cells are sensitive regardless of which chromosome is duplicated,
versus chromosome-specific sensitivities that are likely driven by the effects of duplicated genes encoded on
those chromosomes. We will test how well chromosome-specific sensitivities are explained by an additive
gene model that is based on measured fitness costs of the genes’ over-expression, measured here from a
gene over-expression library expressed in each strain. Aim 3 will begin to uncover the physiological and
genetic mechanisms for variable aneuploidy tolerance. We will first test our hypothesis that genetic variation in
aneuploidy tolerance is due to variations in the ability to manage proteostasis stress. We will then use bulk-
segregant mapping to study the genetic architecture of that variance and identify casual genes. Yeast is an
outstanding model in which to study this fundamental question, since many cellular mechanisms and genetic
principles are conserved in other organisms including humans. This project will generate important insights
into aneuploidy tolerance that will have broad implications for genetics, human health, and evolution.
摘要
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gene-by-environment interactions influence the fitness cost of gene copy-number variation in yeast.
基因与环境的相互作用影响酵母中基因拷贝数变异的适应成本。
- DOI:10.1101/2023.05.11.540375
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Robinson,DeElegant;Vanacloig-Pedros,Elena;Cai,Ruoyi;Place,Michael;Hose,James;Gasch,AudreyP
- 通讯作者:Gasch,AudreyP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AUDREY P GASCH其他文献
AUDREY P GASCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AUDREY P GASCH', 18)}}的其他基金
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
- 批准号:
10735074 - 财政年份:2023
- 资助金额:
$ 30.57万 - 项目类别:
Molecular approaches to sensitizing eukaryotic cells to aneuploidy
使真核细胞对非整倍性敏感的分子方法
- 批准号:
9923577 - 财政年份:2018
- 资助金额:
$ 30.57万 - 项目类别:
Molecular approaches to sensitizing eukaryotic cells to aneuploidy
使真核细胞对非整倍性敏感的分子方法
- 批准号:
10524170 - 财政年份:2018
- 资助金额:
$ 30.57万 - 项目类别:
Molecular approaches to sensitizing eukaryotic cells to aneuploidy
使真核细胞对非整倍性敏感的分子方法
- 批准号:
10403944 - 财政年份:2018
- 资助金额:
$ 30.57万 - 项目类别:
Molecular approaches to sensitizing eukaryotic cells to aneuploidy
使真核细胞对非整倍性敏感的分子方法
- 批准号:
10096189 - 财政年份:2018
- 资助金额:
$ 30.57万 - 项目类别:
相似海外基金
Defining how cells relay mechanical signals to changes in cell architecture
定义细胞如何将机械信号传递给细胞结构的变化
- 批准号:
DP240103259 - 财政年份:2024
- 资助金额:
$ 30.57万 - 项目类别:
Discovery Projects
Architecture and interactions of Granzyme K+ CD8 T cells in inflamed synovium in rheumatoid arthritis
类风湿关节炎炎症滑膜中颗粒酶 K CD8 T 细胞的结构和相互作用
- 批准号:
10916825 - 财政年份:2023
- 资助金额:
$ 30.57万 - 项目类别:
Conference: 2023 Neuroethology: Behavior, Evolution and Neurobiology GRC Linking Diversity in Cells, Circuits, and Brain Architecture to Ecologically Relevant Behaviors
会议:2023 年神经行为学:行为、进化和神经生物学 GRC 将细胞、回路和大脑结构的多样性与生态相关行为联系起来
- 批准号:
2334509 - 财政年份:2023
- 资助金额:
$ 30.57万 - 项目类别:
Standard Grant
Elucidation of early bone tissue architecture by in vivo volumetric image analysis-from both sides of cells and bone matrix
通过体内体积图像分析从细胞和骨基质两侧阐明早期骨组织结构
- 批准号:
23H03114 - 财政年份:2023
- 资助金额:
$ 30.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
3-Dimensional genomic architecture in innate lymphoid cells and allergic inflammation
先天淋巴细胞和过敏性炎症的三维基因组结构
- 批准号:
10417585 - 财政年份:2022
- 资助金额:
$ 30.57万 - 项目类别:
Features of the early adenoma and adjacent colon that drive progression: the role of mutation burden in normal tissue, senescent cells, and tumor clonal architecture
驱动进展的早期腺瘤和邻近结肠的特征:突变负荷在正常组织、衰老细胞和肿瘤克隆结构中的作用
- 批准号:
10707105 - 财政年份:2022
- 资助金额:
$ 30.57万 - 项目类别:
Elucidation of 3D genome architecture of human placental and endometrial cells
阐明人类胎盘和子宫内膜细胞的 3D 基因组结构
- 批准号:
22H03231 - 财政年份:2022
- 资助金额:
$ 30.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
BBSRC-NSF/BIO - Deciphering the rules of nucleus architecture with synthetic cells and organelles
BBSRC-NSF/BIO - 用合成细胞和细胞器破译细胞核结构的规则
- 批准号:
BB/W00125X/1 - 财政年份:2022
- 资助金额:
$ 30.57万 - 项目类别:
Research Grant
Architecture and interactions of Granzyme K+ CD8 T cells in inflamed synovium in rheumatoid arthritis
类风湿关节炎炎症滑膜中颗粒酶 K CD8 T 细胞的结构和相互作用
- 批准号:
10506508 - 财政年份:2022
- 资助金额:
$ 30.57万 - 项目类别:
Features of the early adenoma and adjacent colon that drive progression: the role of mutation burden in normal tissue, senescent cells, and tumor clonal architecture
驱动进展的早期腺瘤和邻近结肠的特征:突变负荷在正常组织、衰老细胞和肿瘤克隆结构中的作用
- 批准号:
10519075 - 财政年份:2022
- 资助金额:
$ 30.57万 - 项目类别: