DATA MINING AND MODEL BUILDING IN MEDICAL INFORMATICS

医疗信息学中的数据挖掘和模型构建

基本信息

项目摘要

Our long-term goal is to assist biomedical scientists by extracting and codifying new knowledge from large biomedical databases routinely by computer. As large collections of data become more readily accessibly, the opportunities for discovering new information increase. We propose here to work toward this goal by extending our prior research on machine learning in two important directions: (1) codification of disparate pieces of knowledge into a coherent model (model building), and (2) discovery of new information in medical databases (data mining). Machine learning programs find classification rules (or decision trees or networks) that separate members of a target class from other individuals. They have emphasized predictive accuracy, with some attention to tradeoffs between accuracy and cost of errors or between accuracy and simplicity. We propose a framework in which these, and other, tradeoffs are explicit and the criteria by which tradeoffs are made are available for modification. We also include semantic considerations among the criteria to control the internal coherence of models. "Data mining" is a recently-coined term for using computers to explore large databases, with a goal of discovering new relationships but usually with no specific target defined at the outset. In addition to accuracy, simplicity, coherence, and cost, a program that purports to discover new relationships must be able to assess novelty. We propose to measure the extent to which proposed relationships are novel by comparing them against existing knowledge in the domain of discourse, and to look for unusual rules (and other relations) that would be very interesting if true. The computer program we are primarily building on, RL, is a knowledge- based learning program that learns classification rules from a collection of data. RL has been demonstrated to be flexible enough to allow guidance from prior knowledge, and powerful enough to learn publishable information for scientists working in several different domains. Both parts of the research will requires extending the RL system in new ways detailed in the research plan, which are consistent with the overall design philosophy of the present system. We will primarily work with data already collected on pneumonia patients with with which we have considerable. We will test the generality of the criteria used to evaluate models and discoveries with a Baynesian Net learning. We will test the generality of the generality of the criteria used to evaluate models and discoveries with Bayesian Net learning system, K2.
我们的长期目标是协助生物医学科学家提取和 定期从大型生物医学数据库中编纂新知识, 电脑随着大量数据的收集变得更加容易访问, 发现新信息的机会增加。我们提出 在这里,我们通过扩展我们先前对机器的研究来实现这一目标 学习的两个重要方向:(1)编纂不同的 将知识片段转化为连贯的模型(模型构建),以及(2) 在医学数据库中发现新信息(数据挖掘)。 机器学习程序找到分类规则(或决策树 或网络),其将目标类的成员与其他 个体他们强调预测的准确性, 注意准确性和错误成本之间的权衡, 准确和简单。我们提出了一个框架,其中这些, 其他,权衡是明确的,权衡的标准是 可供修改。我们还包括语义 控制内部一致性的标准中的考虑因素 模型 "数据挖掘"是一个最近创造的术语,用于使用计算机探索 大型数据库,目标是发现新的关系, 通常一开始没有明确的目标。除了 准确性,简单性,连贯性和成本,一个旨在 发现新的关系必须能够评估新颖性。我们建议 衡量拟议关系的新颖程度, 将它们与话语领域的现有知识进行比较, 并寻找不寻常的规则(和其他关系), 有趣的是,如果是真的。 我们主要构建的计算机程序RL是一种知识- 基于学习的程序,从 收集数据。RL已被证明足够灵活, 允许从先前的知识指导,并强大到足以学习 为在几个不同领域工作的科学家提供可靠的信息 域.研究的这两个部分都需要扩展RL 系统在新的方式详细的研究计划,这是一致的 本系统的总体设计理念。我们将 主要研究已经收集的肺炎患者的数据, 我们有相当多的。我们将测试的一般性 用贝叶斯网络评价模型和发现的标准 学习我们将检验标准的普遍性 用于通过贝叶斯网络学习评估模型和发现 系统,K2.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BRUCE G. BUCHANAN其他文献

BRUCE G. BUCHANAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BRUCE G. BUCHANAN', 18)}}的其他基金

ARTIFICIAL INTELLIGENCE METHODS FOR CRYSTALIZATION
人工智能结晶方法
  • 批准号:
    6033407
  • 财政年份:
    1999
  • 资助金额:
    $ 20.82万
  • 项目类别:
DATA MINING AND MODEL BUILDING IN MEDICAL INFORMATICS
医疗信息学中的数据挖掘和模型构建
  • 批准号:
    6185231
  • 财政年份:
    1999
  • 资助金额:
    $ 20.82万
  • 项目类别:
ARTIFICIAL INTELLIGENCE METHODS FOR CRYSTALIZATION
人工智能结晶方法
  • 批准号:
    6394754
  • 财政年份:
    1999
  • 资助金额:
    $ 20.82万
  • 项目类别:
CORE RESEARCH GRANT
核心研究补助金
  • 批准号:
    6220986
  • 财政年份:
    1999
  • 资助金额:
    $ 20.82万
  • 项目类别:
ARTIFICIAL INTELLIGENCE METHODS FOR CRYSTALIZATION
人工智能结晶方法
  • 批准号:
    6188557
  • 财政年份:
    1999
  • 资助金额:
    $ 20.82万
  • 项目类别:
DATA MINING AND MODEL BUILDING IN MEDICAL INFORMATICS
医疗信息学中的数据挖掘和模型构建
  • 批准号:
    6391275
  • 财政年份:
    1999
  • 资助金额:
    $ 20.82万
  • 项目类别:
CORE RESEARCH GRANT
核心研究补助金
  • 批准号:
    6253540
  • 财政年份:
    1997
  • 资助金额:
    $ 20.82万
  • 项目类别:
EXPLANATION IN THE CLINICAL SETTING
临床环境中的解释
  • 批准号:
    3374319
  • 财政年份:
    1991
  • 资助金额:
    $ 20.82万
  • 项目类别:
EXPLANATION IN THE CLINICAL SETTING
临床环境中的解释
  • 批准号:
    2237747
  • 财政年份:
    1991
  • 资助金额:
    $ 20.82万
  • 项目类别:
EXPLANATION IN THE CLINICAL SETTING
临床环境中的解释
  • 批准号:
    3374317
  • 财政年份:
    1991
  • 资助金额:
    $ 20.82万
  • 项目类别:

相似海外基金

Postdoctoral Fellowship: EAR-PF: Establishing a new eruption classification with a multimethod approach
博士后奖学金:EAR-PF:用多种方法建立新的喷发分类
  • 批准号:
    2305462
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Fellowship Award
Developing a Census Based Generative Geodemographic Classification System
开发基于人口普查的生成地理人口分类系统
  • 批准号:
    ES/Z50273X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Research Grant
From single-cell transcriptomic to single-cell fluxomic: characterising metabolic dysregulations for breast cancer subtype classification
从单细胞转录组到单细胞通量组:表征乳腺癌亚型分类的代谢失调
  • 批准号:
    EP/Y001613/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Research Grant
Classification of contemporary Kansai dialects
当代关西方言的分类
  • 批准号:
    24K03842
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y000455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y001117/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Research Grant
Enhanced X-ray material classification using SiPMs and fast scintillators
使用 SiPM 和快速闪烁体增强 X 射线材料分类
  • 批准号:
    2905969
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Studentship
Particle classification and identification in cryoET of crowded cellular environments
拥挤细胞环境中 CryoET 中的颗粒分类和识别
  • 批准号:
    BB/Y514007/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Research Grant
EAGER: IMPRESS-U: Exploratory Research in Robust Machine Learning for Object Detection and Classification
EAGER:IMPRESS-U:用于对象检测和分类的鲁棒机器学习的探索性研究
  • 批准号:
    2415299
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Standard Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
  • 批准号:
    2403360
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了