Understanding the role of DNA repair in Huntington's Disease pathogenesis: towards new therapeutic targets

了解 DNA 修复在亨廷顿病发病机制中的作用:寻找新的治疗靶点

基本信息

  • 批准号:
    MR/P001629/1
  • 负责人:
  • 金额:
    $ 39.47万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Background and aims:Huntington's disease (HD) is an inherited degenerative brain condition in which patients develop a mixture of symptoms including involuntary movements, changes in mood and behaviour, and dementia. The disease progresses slowly but relentlessly over 15-20 years, and is life-shortening. We have no treatments that can prevent or slow it. Patients often have complex care needs over a long period of time and these put a considerable strain on their carers and families, as well as on healthcare resources in general. Although HD is a rare condition (affecting about 1 in 8000 people), it is one of a family of over 30 diseases caused by expansion of repeating sections of DNA in genes. Together these conditions are estimated to affect over 3 million people worldwide (1 in 2000) at considerable human and economic cost. The genetic mutation causing HD was identified in 1993 but it is still unclear exactly how this leads to specific nerve damage and loss in the brain. The mutation consists of expansion of a repeating 'CAG' sequence in the DNA of the huntingtin gene. Unaffected people have between 9 and 35 CAG repeats; HD patients have at least 36, and generally the greater the number of repeats, the earlier the disease starts. The brain nerve cells that are most affected by the disease harbour more repeats than other cells in the same patient.A recent genetic study involving our group and others identified various DNA repair factors as determinants of the age at which HD symptoms start. We think that DNA repair processes might directly cause an increased number (expansion) of CAG repeats in vulnerable cells and lead to cell death and the onset of disease. The aims of this project are to characterise how this process occurs, and to try to identify ways in which it could be blocked.How the project will be carried out:It is difficult to study cellular processes in the brains of living HD patients and so we will use a variety of experimental methods to test our ideas.1. Genetics. We will look for variants in the DNA repair genes of patients who have developed HD at an unexpectedly early or late age compared to that predicted from their CAG repeat length. We expect that this will identify new variants that will give insight into how and when HD starts.2. Cell culture. We will develop a model system for testing CAG expansion in nerve cells grown in the laboratory. Once this system is established we will test the effects of the DNA repair variants on CAG expansion. Factors that lead to greatly enhanced repeat expansion could represent novel therapeutic targets: if we can block this process we could theoretically delay disease onset.3. Biochemistry. To work out exactly how DNA repair proteins interact with CAG repeats in DNA and cause them to expand, we will purify the different components and analyse their reactions in the laboratory. We will be able to plug the most interesting mutations from our genetic screen into the biochemical analysis to uncover more detail about mechanism.4. Inhibitors of repeat expansion. We will test compounds that can block DNA repair proteins in our CAG expansion system. If they can block CAG expansion then they could represent new therapeutic leads with the potential to alter disease onset. Therefore this project will add important insight as to how the HD mutation leads to disease, linking genetics with cellular and molecular biology. It could elucidate mechanisms of repeat expansion and identify new drug targets, giving a clear link from bench to bedside. These findings are likely to be beneficial in other DNA repeat diseases as well as HD given that the underlying pathogenic mechanisms are probably similar. More broadly, insights into the cellular mechanisms underlying HD may well reveal novel aspects of neuronal biology that are useful in the investigation of other types of neurological disease and dementia.
背景和目的:亨廷顿舞蹈病(HD)是一种遗传性脑退行性疾病,患者会出现多种症状,包括不自主运动、情绪和行为改变以及痴呆。该病进展缓慢,但持续15-20年,并缩短生命。我们没有任何治疗方法可以预防或减缓它。患者在很长一段时间内往往有复杂的护理需求,这给他们的护理人员和家庭以及一般的医疗保健资源带来了相当大的压力。虽然HD是一种罕见的疾病(约8000人中有1人患病),但它是由基因中DNA重复部分扩增引起的30多种疾病之一。据估计,这些疾病加起来影响全世界300多万人(2000年1人),造成了巨大的人力和经济代价。1993年发现了导致HD的基因突变,但目前尚不清楚这是如何导致特定的神经损伤和大脑损失的。突变包括亨廷顿蛋白基因DNA中重复“CAG”序列的扩展。未受影响的人有9到35个CAG重复;HD患者至少有36个,通常重复次数越多,疾病开始得越早。受这种疾病影响最严重的脑神经细胞比同一患者体内的其他细胞含有更多的重复序列。最近一项涉及我们小组和其他人的基因研究发现,各种DNA修复因子是HD症状开始年龄的决定因素。我们认为,DNA修复过程可能直接导致易损细胞中CAG重复序列的增加(扩增),并导致细胞死亡和疾病的发生。这个项目的目的是描述这个过程是如何发生的,并试图找出它可能被阻止的方式。项目将如何实施:研究活的HD患者大脑中的细胞过程是困难的,因此我们将使用各种实验方法来测试我们的想法。遗传学。我们将寻找与CAG重复序列长度预测相比,在早期或晚期发生HD的患者的DNA修复基因中的变异。我们希望这能识别出新的变体,从而了解高清是如何以及何时开始的。细胞培养。我们将开发一个模型系统,用于在实验室培养的神经细胞中测试CAG的扩增。一旦这个系统建立,我们将测试DNA修复变异体对CAG扩增的影响。导致重复扩增大大增强的因素可能代表新的治疗靶点:如果我们能够阻断这一过程,理论上我们就可以延缓疾病的发作。生物化学。为了弄清楚DNA修复蛋白是如何与DNA中的CAG重复序列相互作用并导致它们膨胀的,我们将纯化不同的成分并在实验室分析它们的反应。我们将能够把基因筛选中最有趣的突变插入生化分析中,以揭示有关机制的更多细节。重复扩增抑制剂。我们将在CAG扩增系统中测试能够阻断DNA修复蛋白的化合物。如果它们能够阻断CAG的扩张,那么它们可能代表着新的治疗线索,具有改变疾病发病的潜力。因此,该项目将增加对HD突变如何导致疾病的重要见解,将遗传学与细胞和分子生物学联系起来。它可以阐明重复扩增的机制,并确定新的药物靶点,为从实验到临床提供明确的联系。鉴于潜在的致病机制可能相似,这些发现可能对其他DNA重复疾病以及HD有益。更广泛地说,对HD细胞机制的深入了解可能会揭示神经元生物学的新方面,这对其他类型的神经系统疾病和痴呆的研究很有用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genetic modifiers of Huntington disease differentially influence motor and cognitive domains
亨廷顿病的基因修饰对运动和认知领域有不同的影响
  • DOI:
    10.48350/169116
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lee J
  • 通讯作者:
    Lee J
Association Analysis of Chromosome X to Identify Genetic Modifiers of Huntington's Disease.
  • DOI:
    10.3233/jhd-210485
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hong EP;Chao MJ;Massey T;McAllister B;Lobanov S;Jones L;Holmans P;Kwak S;Orth M;Ciosi M;Monckton DG;Long JD;Lucente D;Wheeler VC;MacDonald ME;Gusella JF;Lee JM
  • 通讯作者:
    Lee JM
Genetic risk underlying psychiatric and cognitive symptoms in Huntington's Disease
亨廷顿病精神和认知症状的遗传风险
  • DOI:
    10.1101/639658
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ellis N
  • 通讯作者:
    Ellis N
Reader Response: Timing and Impact of Psychiatric, Cognitive, and Motor Abnormalities in Huntington Disease.
读者反应:亨廷顿病中精神、认知和运动异常的发生时间和影响。
  • DOI:
    10.1212/wnl.0000000000200161
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Bird TD
  • 通讯作者:
    Bird TD
Dentatorubral-pallidoluysian Atrophy: An Update.
dentatorubral-pallidoluysian萎缩:更新。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Massey其他文献

Clinical characterization of dystonia in adult patients with Huntington's disease
成人亨廷顿病患者肌张力障碍的临床特征
  • DOI:
    10.1111/ene.13349
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    N. V. D. Zande;N. V. D. Zande;Thomas Massey;D. McLauchlan;A. P. Roberts;R. Zutt;M. Wardle;M. Wardle;G. Payne;C. Clenaghan;Marina A.J. Tijssen;A. E. Rosser;K. Peall
  • 通讯作者:
    K. Peall

Thomas Massey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Massey', 18)}}的其他基金

Using genetic modifiers to identify and target pathogenic mechanisms in Huntington's disease
使用遗传修饰剂来识别和靶向亨廷顿病的致病机制
  • 批准号:
    MR/X018253/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.47万
  • 项目类别:
    Fellowship
Investigating the effects of CAG repeat structure and MSH3 variants on the molecular biology of Huntington's disease
研究 CAG 重复结构和 MSH3 变异对亨廷顿舞蹈病分子生物学的影响
  • 批准号:
    MR/S006583/1
  • 财政年份:
    2018
  • 资助金额:
    $ 39.47万
  • 项目类别:
    Research Grant

相似国自然基金

PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
  • 批准号:
    82372275
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Sestrin2抑制内质网应激对早产儿视网膜病变的调控作用及其机制研究
  • 批准号:
    82371070
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding the impact of DNA ADP-ribosylation on telomere function in cancer cells
了解 DNA ADP-核糖基化对癌细胞端粒功能的影响
  • 批准号:
    10751121
  • 财政年份:
    2023
  • 资助金额:
    $ 39.47万
  • 项目类别:
Understanding and Targeting the R-Loop-Mediated DNA Damage Response at Telomeres
了解并靶向 R 环介导的端粒 DNA 损伤反应
  • 批准号:
    10716512
  • 财政年份:
    2023
  • 资助金额:
    $ 39.47万
  • 项目类别:
Understanding the influence of Mitochondrial DNA haplotypes on breast aging and cancer
了解线粒体 DNA 单倍型对乳腺癌衰老和癌症的影响
  • 批准号:
    10591676
  • 财政年份:
    2023
  • 资助金额:
    $ 39.47万
  • 项目类别:
Understanding the role of DNA damage repair in racial disparities of triple-negative breast cancer outcomes
了解 DNA 损伤修复在三阴性乳腺癌结果种族差异中的作用
  • 批准号:
    10347836
  • 财政年份:
    2022
  • 资助金额:
    $ 39.47万
  • 项目类别:
Understanding and targeting RNA/transcription-dependent DNA repair in cancer cells
了解和靶向癌细胞中的 RNA/转录依赖性 DNA 修复
  • 批准号:
    10516451
  • 财政年份:
    2022
  • 资助金额:
    $ 39.47万
  • 项目类别:
Understanding and targeting RNA/transcription-dependent DNA repair in cancer cells
了解和靶向癌细胞中的 RNA/转录依赖性 DNA 修复
  • 批准号:
    10680494
  • 财政年份:
    2022
  • 资助金额:
    $ 39.47万
  • 项目类别:
Understanding the role of DNA damage repair in racial disparities of triple-negative breast cancer outcomes
了解 DNA 损伤修复在三阴性乳腺癌结果种族差异中的作用
  • 批准号:
    10561640
  • 财政年份:
    2022
  • 资助金额:
    $ 39.47万
  • 项目类别:
New computational tools for understanding and predicting AD via age-associated DNA methylation changes
通过与年龄相关的 DNA 甲基化变化来理解和预测 AD 的新计算工具
  • 批准号:
    10509428
  • 财政年份:
    2022
  • 资助金额:
    $ 39.47万
  • 项目类别:
Understanding and exploiting DNA topoisomerases in cancer biology
了解和利用癌症生物学中的 DNA 拓扑异构酶
  • 批准号:
    10296437
  • 财政年份:
    2021
  • 资助金额:
    $ 39.47万
  • 项目类别:
Understanding and exploiting DNA topoisomerases in cancer biology
了解和利用癌症生物学中的 DNA 拓扑异构酶
  • 批准号:
    10473793
  • 财政年份:
    2021
  • 资助金额:
    $ 39.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了