Two Types of Grasp: Dissecting Cortical and Sub-cortical Contributions to Primate Hand Function

两种类型的抓握:解剖皮层和皮层下对灵长类动物手功能的贡献

基本信息

  • 批准号:
    MR/P023967/1
  • 负责人:
  • 金额:
    $ 85.08万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

The primate hand is a highly versatile actuator, capable of flexible reconfiguration to achieve task goals. This is very different from the paw of lower mammals, which has a capability restricted to whole-hand grasp. There is some evidence that primates may have retained capacities for more primitive grasp, alongside the evolutionary development of dexterous hand function. This suggests that the hand can operate in two modes. In one, the fingers flex or extend together to grasp an object (the power grip). In the other mode, single fingers can be independently controlled, to produce arbitrary gestures or complex grasps exemplified by the precision (pinch) grip. We propose that these modes are underpinned by different control circuits within the brain and spinal cord. Whilst interesting to the basic science of the neural control of movement, this idea becomes especially important in patients who are recovering from damage such as after stroke or spinal cord injury. Then, key components of the precision grip network seem to be lost; recovery is limited to gross grasp. The hand becomes a paw.In this proposal, we will determine which neural circuits contribute to the different types of hand use, using macaque monkeys which have very similar hand function to humans. We will first train monkeys to perform power grip, precision grip and an isolated index finger movement. Using fine microelectrodes, we will then record neural activity from the motor and pre-motor cortex, brainstem and spinal cord during performance of the different hand movements. By measuring the changes in cell activity as the tasks are carried out, we will be able to tell which areas contribute to each mode of hand operation. In some sessions, we will inject tiny quantities of a drug into an area to silence it; observing the types of hand deficits produced will confirm the role each area plays.Commands to make any movement originate in the cerebral cortex, and must be transmitted to lower centres to allow them to be executed. In a second series of experiments using anaesthetised monkeys, we will place stimulating electrodes in the motor and pre-motor areas of the cortex, and measure cell responses in the brainstem and spinal cord following cortical stimulation. This will tell us how the cortex communicates its instructions to sub-cortical structures. In humans, it is possible to activate cortical outputs non-invasively using transcranial magnetic brain stimulation (TMS). If we change how the coil is held on the head, TMS seems to stimulate the brain differently, but we don't know what is activated in the various conditions. We will address this by also using TMS in the anaesthetised monkeys, to tell us if TMS can selectively access the circuits for power and precision grips depending on how the coil is oriented. Finally, we will test how cells in the various areas respond to stimulation of the sensory receptors in skin and muscle.In studies in humans, we will apply the knowledge gained, using TMS in different orientations combined with sensory stimuli to probe specific components of the power and precision grip networks. After validating the methods in healthy human subjects, we will apply them to individuals who have recovered from spinal cord injury, thereby showing how the various circuits reconfigure to mediate recovery.This work will reveal core information about the control of human hand function and its recovery after damage. This foundation is required to develop novel, principled approaches to grasp rehabilitation. As the hand is so central to activities of daily living, even small future improvements in function could have major impacts in alleviating disability and raising quality of life.
灵长类动物的手是一个高度通用的致动器,能够灵活地重新配置,以实现任务目标。这与低等哺乳动物的爪子非常不同,后者的能力仅限于全手抓握。有一些证据表明,灵长类动物可能保留了更原始的抓握能力,以及灵巧手功能的进化发展。这表明手可以在两种模式下操作。其中一种是手指弯曲或伸展在一起以抓住物体(动力握法)。在另一种模式下,单个手指可以独立控制,以产生任意手势或复杂的抓握,例如精确(捏)抓握。我们认为这些模式是由大脑和脊髓内不同的控制回路支撑的。虽然对运动神经控制的基础科学很感兴趣,但这个想法在从中风或脊髓损伤等损伤中恢复的患者中变得特别重要。然后,精确抓握网络的关键组成部分似乎丢失了;恢复仅限于粗略的抓握。手变成了爪子。在这个建议中,我们将确定哪些神经回路有助于不同类型的手使用,使用与人类手功能非常相似的猕猴。我们将首先训练猴子进行力量抓握,精确抓握和单独的食指运动。使用精细的微电极,我们将记录运动和前运动皮层、脑干和脊髓在不同手部动作过程中的神经活动。通过测量执行任务时细胞活动的变化,我们将能够分辨出哪些区域对每种手部操作模式起作用。在某些治疗过程中,我们会向某个区域注射微量的药物,以使其安静下来。观察所产生的手部缺陷类型,将确认每个区域所扮演的角色。做出任何动作的命令都来自大脑皮层,必须传递到较低的中枢,才能执行。在第二个使用麻醉猴子的系列实验中,我们将在皮质的运动和前运动区放置刺激电极,并测量皮质刺激后脑干和脊髓中的细胞反应。这将告诉我们皮层如何将指令传达给皮层下结构。在人类中,可以使用经颅磁脑刺激(TMS)无创地激活皮质输出。如果我们改变线圈在头部的固定方式,TMS似乎会以不同的方式刺激大脑,但我们不知道在不同的条件下会激活什么。我们将通过在麻醉的猴子中使用TMS来解决这个问题,告诉我们TMS是否可以根据线圈的方向选择性地访问电路以获得电力和精确的抓握。最后,我们将测试不同区域的细胞如何对皮肤和肌肉中的感觉受体的刺激做出反应。在人类研究中,我们将应用所获得的知识,使用不同方向的TMS结合感觉刺激来探测力量和精确抓握网络的特定组件。在对健康受试者进行验证后,我们将把这些方法应用于脊髓损伤康复者,从而展示各种回路如何重新配置以介导恢复。这项工作将揭示有关人类手部功能控制及其损伤后恢复的核心信息。这个基础是需要开发新的,原则性的方法来掌握康复。由于手是日常生活活动的核心,即使是未来功能的微小改善也可能对减轻残疾和提高生活质量产生重大影响。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Plastic changes in primate motor cortex following paired peripheral nerve stimulation.
  • DOI:
    10.1152/jn.00288.2020
  • 发表时间:
    2021-02-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Habekost B;Germann M;Baker SN
  • 通讯作者:
    Baker SN
Classification of Cortical Neurons by Spike Shape and the Identification of Pyramidal Neurons.
Abnormal Blink Reflex and Intermuscular Coherence in Writer's Cramp.
  • DOI:
    10.3389/fneur.2018.00517
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Choudhury S;Singh R;Chatterjee P;Trivedi S;Shubham S;Baker MR;Kumar H;Baker SN
  • 通讯作者:
    Baker SN
The Existence of the StartReact Effect Implies Reticulospinal, Not Corticospinal, Inputs Dominate Drive to Motoneurons during Voluntary Movement.
  • DOI:
    10.1523/jneurosci.2473-21.2022
  • 发表时间:
    2022-10-05
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Tapia, Jesus A.;Tohyama, Takamichi;Poll, Annie;Baker, Stuart N.
  • 通讯作者:
    Baker, Stuart N.
Cross-Species RNA-Seq Study Comparing Transcriptomes of Enriched Osteocyte Populations in the Tibia and Skull.
  • DOI:
    10.3389/fendo.2020.581002
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Wang N;Niger C;Li N;Richards GO;Skerry TM
  • 通讯作者:
    Skerry TM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stuart Baker其他文献

Systemic Anticoagulant Effect of Low-Dose Subcutaneous Unfractionated Heparin as Determined Using Thrombelastography
使用血栓弹力图测定低剂量皮下普通肝素的全身抗凝作用
  • DOI:
    10.1177/0310057x0703500406
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    S. Matzelle;Neville M. Gibbs;W. Weightman;M. Sheminant;R. Rowe;Stuart Baker
  • 通讯作者:
    Stuart Baker
Bridging scales: from cortical single-neuron bursting to macroscopic high-frequency EEG
  • DOI:
    10.1186/1471-2202-10-s1-p73
  • 发表时间:
    2009-07-13
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Bartosz Telenczuk;Stuart Baker;Andreas Herz;Gabriel Curio
  • 通讯作者:
    Gabriel Curio
Tetrasomy 15q26: a distinct syndrome or Shprintzen-Goldberg syndrome phenocopy?
15q26 四体:一种独特的综合征或 Shprintzen-Goldberg 综合征表型?
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    B. Levy;D. Tegay;P. Papenhausen;J. Tepperberg;O. Nahum;T. Tsuchida;B. Pletcher;L. Ala‐kokko;Stuart Baker;Barbara Frederick;K. Hirschhorn;P. Warburton;A. Shanske
  • 通讯作者:
    A. Shanske
Recommendations for the College of Intensive Care Medicine (CICM) trainee research project: A modified Delphi study
  • DOI:
    10.1016/j.ccrj.2024.05.002
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ariel Ho;Kerina J. Denny;Kevin B. Laupland;Mahesh Ramanan;Alexis Tabah;James McCullough;Jessica A. Schults;Sainath Raman;Yogesh Apte;Antony Attokaran;Stuart Baker;Roland Bartholdy;Neeraj Bhadange;Jane Brailsford;Katrina Cook;Alexandre David;Jayesh Dhanani;Felicity Edwards;Hatem Elkady;Tess Evans
  • 通讯作者:
    Tess Evans
Clinical Evaluation of the Non-Invasive Cardiac Output (NICO) Monitor in the Intensive Care Unit
重症监护室无创心输出量 (NICO) 监测仪的临床评价
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    P. V. V. Heerden;Stuart Baker;S. I. Lim;C. Weidman;Max Bulsara
  • 通讯作者:
    Max Bulsara

Stuart Baker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stuart Baker', 18)}}的其他基金

Neural Commands for Fast Movements in the Primate Motor System
灵长类动物运动系统快速运动的神经命令
  • 批准号:
    BB/V00896X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Research Grant
Sub-cortical systems for stopping
用于停止的皮层下系统
  • 批准号:
    MR/P012922/1
  • 财政年份:
    2017
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Research Grant
Wireless High-Bandwidth Trans-cutaneous Signal Transmission
无线高带宽经皮信号传输
  • 批准号:
    G1100550/1
  • 财政年份:
    2012
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Research Grant
Reprogramming the Nervous System through a Wearable Neurostimulation Device
通过可穿戴神经刺激设备重新编程神经系统
  • 批准号:
    G0801705/1
  • 财政年份:
    2009
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Research Grant
Cortical and Sub-cortical Contributions to Bimanual Coordination
皮质和皮质下对双手协调的贡献
  • 批准号:
    BB/G002355/1
  • 财政年份:
    2008
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Research Grant
Spike Train Analysis Network
尖峰序列分析网络
  • 批准号:
    EP/E062962/1
  • 财政年份:
    2007
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Research Grant
Reticulospinal Function in Health and Recovery from Lesion
健康和病变恢复中的网状脊髓功能
  • 批准号:
    G0600954/1
  • 财政年份:
    2007
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Research Grant
Copy of UK Spike Train Analysis Task Force
英国 Spike Train 分析工作组的副本
  • 批准号:
    EP/D077109/1
  • 财政年份:
    2006
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Research Grant

相似国自然基金

相似海外基金

Are family firms in Japan resilient to economic shock? Digging further by family types, management strategies, and earnings quality.
日本的家族企业能否抵御经济冲击?
  • 批准号:
    24K00297
  • 财政年份:
    2024
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Computations of transcriptomic neuron types in cortex
皮层转录组神经元类型的计算
  • 批准号:
    EP/Y028295/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Research Grant
ZooCELL: Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data ..
ZooCELL:追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模态数据方面的多学科培训..
  • 批准号:
    EP/Y037049/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Research Grant
Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data analysis
追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模式数据分析的多学科培训
  • 批准号:
    EP/Y037081/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Research Grant
Towards a Smart Digital Forensic Advisor to Support First Responders with At-Scene Triage of Digital Evidence Across Crime Types
打造智能数字取证顾问,支持急救人员对不同犯罪类型的数字证据进行现场分类
  • 批准号:
    ES/Y010647/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Research Grant
Heat regulation by the fibre types in muscle
肌肉纤维类型的热量调节
  • 批准号:
    DP240101172
  • 财政年份:
    2024
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Discovery Projects
The interaction of concrete vs. abstract message types and time of day on prosocial behaviors.
具体与抽象消息类型以及一天中的时间对亲社会行为的相互作用。
  • 批准号:
    24K16470
  • 财政年份:
    2024
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Why do some types of biotic change produce predictable ecological, evolutionary and life history strategy change?
为什么某些类型的生物变化会产生可预测的生态、进化和生活史策略变化?
  • 批准号:
    EP/Y029720/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Research Grant
Comprehensive Single Cell Optoporation for Diverse Types of Cells.
针对不同类型细胞的全面单细胞选择。
  • 批准号:
    23H00168
  • 财政年份:
    2023
  • 资助金额:
    $ 85.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Pediatric Hospitals as European drivers for multi-party computation and synthetic data generation capabilities across clinical specialties and data types
儿科医院是欧洲跨临床专业和数据类型多方计算和合成数据生成能力的推动者
  • 批准号:
    10103799
  • 财政年份:
    2023
  • 资助金额:
    $ 85.08万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了