Neural Commands for Fast Movements in the Primate Motor System

灵长类动物运动系统快速运动的神经命令

基本信息

  • 批准号:
    BB/V00896X/1
  • 负责人:
  • 金额:
    $ 133.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Fast movements are important for survival, whether it be catching prey or avoiding being caught, or a pedestrian jumping out of the way of an approaching car. Fast movements are much prized in human sports. Muscles are made up of muscle fibres, which are bundled functionally into motor units. Each motor unit is activated by a single nerve fibre, which originates from a motoneuron cell in the spinal cord. There are typically several hundred motor units in a muscle. Recent work suggests that these spinal motoneurons connected to a given muscle must be activated very closely synchronised in time to maximise movement speed. Various different brain and spinal cord systems provide inputs to motoneurons which drive their activity. Surprisingly, there are few measurements of how these inputs are activated during fast movements, but the available data suggests a sluggish increase in activation, in marked contrast to the sharply coordinated and synchronous firing of motoneurons. A major unknown is how such tight motoneuron synchrony is achieved. In this proposal, we will test the idea that motoneurons are transiently inhibited (I), before being excited (E) to generate fast movement. Our preliminary evidence, from indirect measures in humans and computer modelling, suggests that this 'I-E' activation scheme could increase movement speed by providing better motoneuron synchronisation. We will test this idea using recordings from healthy human subjects and awake behaving monkeys. This will provide theoretical insights into neural circuit function and the role of inhibition, and practically will help us to understand limits to speed performance in health and disease.In humans, we will use fine electrodes placed within a muscle, and surface grid electrodes on the skin overlying a muscle, to record muscle activity. We will use mathematical methods to separate the multi-channel recordings into the activity patterns of single motor units. We will analyse these to look for evidence that initial inhibition speeds up movement. We will also ask subjects to undertake a 4-week period of training to increase speed, and measure how this changes the timing of motoneuron activation.Monkeys will be trained to perform fast movements in response to auditory and visual instruction on a computer screen. We will record motor unit activity using surface grid electrodes, just as in humans. In addition, we will insert neural probes with 1024 closely-spaced recording sites into the motor cortex, reticular formation and spinal cord - three important centres which generate the input to activate motoneurons. We will extend some of the analysis methods developed for recordings from muscle to these neural recordings. This will allow us to resolve activity from many neurons simultaneously. Using mathematical methods which look at how the activity of one cell influences the activity of another, we will identify connections between cells locally, and to motoneurons. This approach also permits us to distinguish inhibitory from excitatory cells. We will use these recordings to search for evidence of 'I-E' drive, both to motoneurons and from one part of the central nervous system to another (e.g. from the cortex to the brainstem). Finally, we will exploit this rich dataset to quantify the relative importance of cortical, brainstem and spinal sources of motoneuron input during fast movement.This project will provide fundamental knowledge underpinning our understanding of motor control at the limit of human/animal performance, using technologies which have only recently become available. Success may help us to improve individual performance, e.g. in sport, or in patients who find that their movements are slowed after damage to the motor system or with ageing. Increased understanding of the properties of 'I-E' drive, in a system ideally suited to dissect this, may reveal novel principles of neural communication applicable more generally and across species.
快速动作对生存很重要,无论是捕捉猎物还是避免被抓住,还是行人从驶来的汽车面前跳开。在人类运动中,快速的动作是非常重要的。肌肉是由肌肉纤维组成的,这些肌肉纤维在功能上被捆绑成运动单元。每个运动单元都是由一根神经纤维激活的,神经纤维起源于脊髓中的运动神经元细胞。肌肉中通常有几百个运动单元。最近的研究表明,这些与特定肌肉相连的脊髓运动神经元必须在时间上非常紧密地同步激活,以最大限度地提高运动速度。各种不同的大脑和脊髓系统为运动神经元提供驱动其活动的输入。令人惊讶的是,几乎没有测量这些输入是如何在快速运动中被激活的,但现有的数据表明,激活的缓慢增加,与运动神经元的强烈协调和同步放电形成鲜明对比。一个主要的未知是如此紧密的运动神经元同步是如何实现的。在这个提议中,我们将测试运动神经元在被激发(E)以产生快速运动之前被短暂抑制(I)的想法。我们从人类间接测量和计算机模拟中获得的初步证据表明,这种“I-E”激活方案可以通过提供更好的运动神经元同步来提高运动速度。我们将使用健康的人类受试者和清醒的猴子的记录来测试这个想法。这将为神经回路功能和抑制作用提供理论见解,并在实践中帮助我们了解健康和疾病中速度表现的限制。在人类身上,我们将使用放置在肌肉内的精细电极,以及覆盖在肌肉上的皮肤表面网格电极,来记录肌肉活动。我们将使用数学方法将多通道记录分离成单个运动单元的活动模式。我们将对这些进行分析,以寻找最初的抑制加速运动的证据。我们还将要求受试者进行为期4周的训练以提高速度,并测量这如何改变运动神经元激活的时间。猴子将接受训练,根据电脑屏幕上的听觉和视觉指令做出快速动作。我们将使用表面网格电极记录运动单元的活动,就像在人类身上一样。此外,我们将在运动皮层、网状结构和脊髓这三个产生输入以激活运动神经元的重要中心,插入具有1024个紧密间隔记录位点的神经探针。我们将把一些用于肌肉记录的分析方法扩展到这些神经记录。这将使我们能够同时解析许多神经元的活动。使用数学方法观察一个细胞的活动如何影响另一个细胞的活动,我们将识别局部细胞之间的联系,以及与运动神经元的联系。这种方法还允许我们区分抑制性细胞和兴奋性细胞。我们将使用这些录音来寻找“I-E”驱动的证据,包括从运动神经元到中枢神经系统的一部分到另一部分(例如从皮层到脑干)。最后,我们将利用这个丰富的数据集来量化快速运动过程中运动神经元输入的皮层、脑干和脊髓来源的相对重要性。该项目将使用最近才可用的技术,为我们理解人类/动物性能极限下的运动控制提供基础知识。成功可以帮助我们提高个人的表现,例如在运动中,或者在运动系统受损或随着年龄的增长而发现自己的运动变慢的病人身上。在一个理想的系统中,对“I-E”驱动特性的进一步了解,可能会揭示更普遍和跨物种的神经通信的新原理。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Startling stimuli increase maximal motor unit discharge rate and rate of force development in humans.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stuart Baker其他文献

Systemic Anticoagulant Effect of Low-Dose Subcutaneous Unfractionated Heparin as Determined Using Thrombelastography
使用血栓弹力图测定低剂量皮下普通肝素的全身抗凝作用
  • DOI:
    10.1177/0310057x0703500406
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    S. Matzelle;Neville M. Gibbs;W. Weightman;M. Sheminant;R. Rowe;Stuart Baker
  • 通讯作者:
    Stuart Baker
Bridging scales: from cortical single-neuron bursting to macroscopic high-frequency EEG
  • DOI:
    10.1186/1471-2202-10-s1-p73
  • 发表时间:
    2009-07-13
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Bartosz Telenczuk;Stuart Baker;Andreas Herz;Gabriel Curio
  • 通讯作者:
    Gabriel Curio
Tetrasomy 15q26: a distinct syndrome or Shprintzen-Goldberg syndrome phenocopy?
15q26 四体:一种独特的综合征或 Shprintzen-Goldberg 综合征表型?
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    B. Levy;D. Tegay;P. Papenhausen;J. Tepperberg;O. Nahum;T. Tsuchida;B. Pletcher;L. Ala‐kokko;Stuart Baker;Barbara Frederick;K. Hirschhorn;P. Warburton;A. Shanske
  • 通讯作者:
    A. Shanske
Recommendations for the College of Intensive Care Medicine (CICM) trainee research project: A modified Delphi study
  • DOI:
    10.1016/j.ccrj.2024.05.002
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ariel Ho;Kerina J. Denny;Kevin B. Laupland;Mahesh Ramanan;Alexis Tabah;James McCullough;Jessica A. Schults;Sainath Raman;Yogesh Apte;Antony Attokaran;Stuart Baker;Roland Bartholdy;Neeraj Bhadange;Jane Brailsford;Katrina Cook;Alexandre David;Jayesh Dhanani;Felicity Edwards;Hatem Elkady;Tess Evans
  • 通讯作者:
    Tess Evans
Clinical Evaluation of the Non-Invasive Cardiac Output (NICO) Monitor in the Intensive Care Unit
重症监护室无创心输出量 (NICO) 监测仪的临床评价
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    P. V. V. Heerden;Stuart Baker;S. I. Lim;C. Weidman;Max Bulsara
  • 通讯作者:
    Max Bulsara

Stuart Baker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stuart Baker', 18)}}的其他基金

Sub-cortical systems for stopping
用于停止的皮层下系统
  • 批准号:
    MR/P012922/1
  • 财政年份:
    2017
  • 资助金额:
    $ 133.8万
  • 项目类别:
    Research Grant
Two Types of Grasp: Dissecting Cortical and Sub-cortical Contributions to Primate Hand Function
两种类型的抓握:解剖皮层和皮层下对灵长类动物手功能的贡献
  • 批准号:
    MR/P023967/1
  • 财政年份:
    2017
  • 资助金额:
    $ 133.8万
  • 项目类别:
    Research Grant
Wireless High-Bandwidth Trans-cutaneous Signal Transmission
无线高带宽经皮信号传输
  • 批准号:
    G1100550/1
  • 财政年份:
    2012
  • 资助金额:
    $ 133.8万
  • 项目类别:
    Research Grant
Reprogramming the Nervous System through a Wearable Neurostimulation Device
通过可穿戴神经刺激设备重新编程神经系统
  • 批准号:
    G0801705/1
  • 财政年份:
    2009
  • 资助金额:
    $ 133.8万
  • 项目类别:
    Research Grant
Cortical and Sub-cortical Contributions to Bimanual Coordination
皮质和皮质下对双手协调的贡献
  • 批准号:
    BB/G002355/1
  • 财政年份:
    2008
  • 资助金额:
    $ 133.8万
  • 项目类别:
    Research Grant
Spike Train Analysis Network
尖峰序列分析网络
  • 批准号:
    EP/E062962/1
  • 财政年份:
    2007
  • 资助金额:
    $ 133.8万
  • 项目类别:
    Research Grant
Reticulospinal Function in Health and Recovery from Lesion
健康和病变恢复中的网状脊髓功能
  • 批准号:
    G0600954/1
  • 财政年份:
    2007
  • 资助金额:
    $ 133.8万
  • 项目类别:
    Research Grant
Copy of UK Spike Train Analysis Task Force
英国 Spike Train 分析工作组的副本
  • 批准号:
    EP/D077109/1
  • 财政年份:
    2006
  • 资助金额:
    $ 133.8万
  • 项目类别:
    Research Grant

相似海外基金

Brain Commands and Beyond: Decoding Inner Speech for Neural Prosthetics
大脑命令及其他:解码神经修复术的内部语音
  • 批准号:
    MR/X00757X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 133.8万
  • 项目类别:
    Fellowship
Wearable eye tracking and mental commands for touch-free computational assistance
可穿戴式眼球追踪和心理命令,提供非接触式计算辅助
  • 批准号:
    575143-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 133.8万
  • 项目类别:
    University Undergraduate Student Research Awards
Decoding motor commands and sensory information encoded in cerebellar mossy fibers: investigation by simultaneous observation of multiple fibers.
解码小脑苔藓纤维中编码的运动命令和感觉信息:通过同时观察多个纤维进行调查。
  • 批准号:
    19K06883
  • 财政年份:
    2019
  • 资助金额:
    $ 133.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SaTC: CORE: Small: Practical and Robust Hidden Voice Commands
SaTC:核心:小:实用且强大的隐藏语音命令
  • 批准号:
    1718498
  • 财政年份:
    2017
  • 资助金额:
    $ 133.8万
  • 项目类别:
    Standard Grant
Extraction of motor and sensory commands in the brain using a sparsely-distributed brain-machine interface
使用稀疏分布的脑机接口提取大脑中的运动和感觉命令
  • 批准号:
    17K17684
  • 财政年份:
    2017
  • 资助金额:
    $ 133.8万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
robotic manipulator control interface based on speech and single-handed finger touch commands
基于语音和单手手指触摸命令的机器人机械手控制界面
  • 批准号:
    17K00283
  • 财政年份:
    2017
  • 资助金额:
    $ 133.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Integration of Feedforward Locomotor Commands and Sensory Feedback Signals by Medullary Reticulospinal Neurons that Mediate Postural Responses
调节姿势反应的髓质网状脊髓神经元对前馈运动命令和感觉反馈信号的整合
  • 批准号:
    9049821
  • 财政年份:
    2016
  • 资助金额:
    $ 133.8万
  • 项目类别:
The Integration of Feedforward Locomotor Commands and Sensory Feedback Signals by Medullary Reticulospinal Neurons that Mediate Postural Responses
调节姿势反应的髓质网状脊髓神经元对前馈运动命令和感觉反馈信号的整合
  • 批准号:
    9387055
  • 财政年份:
    2016
  • 资助金额:
    $ 133.8万
  • 项目类别:
Development of lead commands for new anti-infective agents
开发新型抗感染药物的先导指令
  • 批准号:
    26670043
  • 财政年份:
    2014
  • 资助金额:
    $ 133.8万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Episodic Memories as Mental Commands for EEG-based Brain Computer Interfacing
情景记忆作为基于脑电图的脑机接口的心理命令
  • 批准号:
    465064-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 133.8万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了