ELECTROSTATIC SURFACE OPTIMIZATION FOR OSSEOINTEGRATION
用于骨整合的静电表面优化
基本信息
- 批准号:6055721
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-09-30 至 2001-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Debilitating degenerative joint diseases are routinely treated by joint
replacements to allow restoration of relatively pain-free motion to the
affected joint. Fracture healing and bony fusion (for example, in the
treatment of degenerative disease) can be facilitated by the use of
synthetic bone grafts or tissue engineered scaffolds. The success of
each of these surgical interventions is dependent on the ability of bone
tissue to integrate with the surface of the implant biomaterial.
In order to achieve osseointegration, the bone forming cell (the
osteoblast) must first adhere to the biomaterial surface; the
osteoblast/biomaterial interaction must then be conducive to the
elaboration of a bone-specific extracellular matrix (ECM) which will
undergo mineralization and remodeling to form an integrated
bone/biomaterial interface. A handful of synthetic biomaterials, termed
bioactive materials, will elicit osseointegration; these are calcium
phosphate ceramics (including hydroxyapatite) and bioactive glasses.
In contrast, the more commonly used bone implant materials, titanium
alloy (Ti6A14V) and cobalt chromium alloy, will not support osteoblast
adhesion and direct bone bonding in vivo, instead the resulting
interface consists predominantly of fibrous tissue. From many
experiments it is clear that material properties affecting
osseointegration include surface charge, chemistry, and topography,
although the specific parameters that facilitate osseointegration are
presently poorly understood. Once the specific surface properties which
encourage osteoblast attachment are determined, it would then be
possible to engineer the surface of any compatible material to make that
material bioactive or bone bonding.
We suggest that a dominant mechanism in cellular attachment to a
biomaterial surface is electrostatic in nature, with the electrostatic
characteristics of the surface encouraging the adsorption of specific
ECM proteins (in particular, fibronectin, an important serum protein
involved in cell adhesion) to facilitate initial attachment of
osteoblasts to the biomaterial surface. While evidence of the
importance of electrostatic interactions has been documented, the
relative contributions of surface charge, charge distribution, and
charge density on cellular attachment and protein adsorption are
presently not understood. Previous studies have been limited in this
regard as they have not uncoupled the electrostatics from functionality
and surface energy due to surface chemistry. In this work, we propose
a unique model to elucidate the effect of electrostatics on osteoblast
adhesion and protein adsorption. We hypothesize that negatively charged
surfaces will promote osteoblast attachment and spreading, while
positively charged surfaces will inhibit cellular attachment and we
expect that osteoblasts will exhibit differential adhesion on surfaces
whose charge distribution and charge density has been patterned at
varying subcellular dimensions. Further, we hypothesize that the
quantity of fibronectin adsorbed to differently charged surfaces will
not differ, but the conformation of the fibronectin on those charged
surfaces will.
使人衰弱的退行性关节疾病常规地通过关节治疗来治疗。
置换,以允许恢复相对无痛的运动,
受影响的关节 骨折愈合和骨融合(例如,
变性疾病的治疗)可以通过使用
合成骨移植物或组织工程支架。 的成功
这些外科手术中的每一种都依赖于骨的能力
组织以与植入物生物材料的表面整合。
为了实现骨整合,骨形成细胞(成骨细胞)可以是骨形成细胞(成骨细胞)。
成骨细胞)必须首先粘附到生物材料表面;
成骨细胞/生物材料的相互作用必须有利于
骨特异性细胞外基质(ECM)的制备,
经过矿化和重塑,形成一个完整的
骨/生物材料界面。 一些合成生物材料,被称为
生物活性材料,将引起骨整合;这些是钙
磷酸盐陶瓷(包括羟基磷灰石)和生物活性玻璃。
相比之下,更常用的骨植入材料,钛
合金(Ti6 A14 V)和钴铬合金,不支持成骨细胞
粘附和直接骨结合在体内,而不是产生的
界面主要由纤维组织组成。 从许多
实验表明,材料性能影响
骨整合包括表面电荷、化学和形貌,
尽管促进骨整合的具体参数
目前知之甚少。 一旦特定的表面性质,
鼓励成骨细胞附着,那么它将是
可以设计任何兼容材料的表面,
材料生物活性或骨结合。
我们认为,在细胞附着的一个主导机制,
生物材料表面本质上是静电的,
表面的特性,鼓励吸附特定的
ECM蛋白(特别是纤连蛋白,一种重要的血清蛋白
参与细胞粘附),以促进
成骨细胞到生物材料表面。 虽然有证据表明
静电相互作用的重要性已经被证明,
表面电荷、电荷分布和
细胞附着和蛋白质吸附的电荷密度是
目前还不了解。 以前的研究局限于此
因为它们没有将静电与功能分开
和由于表面化学而产生的表面能。 在这项工作中,我们建议
一个独特的模型来阐明静电对成骨细胞的影响
粘附和蛋白质吸附。 我们假设负电荷
表面将促进成骨细胞附着和扩散,
带正电荷的表面会抑制细胞附着,
预期成骨细胞将在表面上表现出不同的粘附性
其电荷分布和电荷密度已被图案化,
不同的亚细胞尺寸。 此外,我们假设,
吸附到不同电荷表面的纤连蛋白的量将
没有不同,但那些带电荷的纤维连接蛋白的构象
表面会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHELE S MARCOLONGO其他文献
MICHELE S MARCOLONGO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHELE S MARCOLONGO', 18)}}的其他基金
Molecular Engineering of Cartilage PCM Mechanotransduction in Osteoarthritis Using Biomimetic Proteoglycans
使用仿生蛋白多糖进行骨关节炎软骨 PCM 机械转导的分子工程
- 批准号:
10344701 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Molecular Engineering of Cartilage PCM Mechanotransduction in Osteoarthritis Using Biomimetic Proteoglycans
使用仿生蛋白多糖进行骨关节炎软骨 PCM 机械转导的分子工程
- 批准号:
10663163 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
ELECTROSTATIC SURFACE OPTIMIZATION FOR OSSEOINTEGRATION
用于骨整合的静电表面优化
- 批准号:
2793463 - 财政年份:1998
- 资助金额:
$ 7.5万 - 项目类别:
ELECTROSTATIC SURFACE OPTIMIZATION FOR OSSEOINTEGRATION
用于骨整合的静电表面优化
- 批准号:
6171196 - 财政年份:1998
- 资助金额:
$ 7.5万 - 项目类别:














{{item.name}}会员




