Molecular Engineering of Cartilage PCM Mechanotransduction in Osteoarthritis Using Biomimetic Proteoglycans
使用仿生蛋白多糖进行骨关节炎软骨 PCM 机械转导的分子工程
基本信息
- 批准号:10663163
- 负责人:
- 金额:$ 31.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-10 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdhesionsAffectAmericanAnterior Cruciate LigamentArthritisAttenuatedBindingBiomimeticsBovine CartilageCalcium SignalingCartilageCartilage MatrixCatabolismCellsCellular Metabolic ProcessChemicalsChondrocytesCollagenCollagen Type VICytoskeletonDegenerative polyarthritisDepositionDiseaseEarly treatmentEngineeringEnzymesEventExperimental DesignsExtracellular MatrixFunctional disorderGene ExpressionHealthHistologyHumanHydrogelsImmunohistochemistryIn SituIn VitroIndividualInfiltrationInflammatoryInterleukin-1 betaInterventionIntra-Articular InjectionsKneeKnowledgeLifeMatrix MetalloproteinasesMechanicsMediatingMetabolicMissionModulusMolecularMusculoskeletal DiseasesNanostructuresNatural regenerationOperative Surgical ProceduresOrganismOryctolagus cuniculusPainPhysiologicalPlayPropertyProteoglycanResistanceRoleSepharoseSignal TransductionSpectrum AnalysisStimulusStructureTestingTherapeutic AgentsThickTimeUnited States National Institutes of HealthWorkacrylic acidaggrecanaggrecanasebiglycanbiomechanical testcartilage degradationcartilage regenerationchondroitin sulfate glycosaminoglycandisabilityin vivointerestmechanical propertiesmechanical stimulusmechanotransductionmeterminimally invasivenanoarchitectureperlecanproteoglycan core proteinresponsethree dimensional cell culturetool
项目摘要
Abstract
Regeneration of osteoarthritic cartilage has been a largely unmet biomedical challenge for the past fifty years.
Numerous strategies are being employed to harness the synthetic power of cells to generate new extracellular
matrix in the hope of reversing the pain and dysfunction associated with osteoarthritis (OA), in keeping with the
mission of the NIH to seek fundamental knowledge about of living systems and the application of that knowledge
to enhance health, lengthen life, and reduce illness and disability. Of particular interest is the emerging role of
the pericellular matrix (PCM), the region immediately surrounding the chondrocyte, due to its demonstrated
importance in mediating chondrocyte mechanotransduction in both healthy and OA cartilage. In OA,
degeneration of the PCM is one leading event of disease initiation, contributing to disrupted chondrocyte
mechanotransduction and irreversible cartilage degradation. Thus, if we can engineer the properties of the PCM,
there is a potential for us to modulate chondrocyte mechanosensitive activities, and in turn, to promote cartilage
regeneration and/or to attenuate osteoarthritic cartilage degeneration. Our biomimetic proteoglycans (BPGs)
have the niche effect of engineering cartilage PCM. We chemically end-attached 7-8 chondroitin sulfate
glycosaminoglycans (CS-GAGs) to a poly(acrylic acid) (PAA) core (Mw ~10 kDa), resulting in a biomimetic
proteoglycan, BPG10, with a bottle-brush nanostructure mimicking the native aggrecan. When infiltrated into
bovine cartilage explants in vitro or intra-articularly injected into rabbit knees in vivo, BPG10 was preferentially
localized in the PCM. This localization led to a significant increase in the micromodulus of the PCM in vitro, and
in turn, significantly enhanced chondrocyte intracellular calcium signaling activities. The role of BPG10 is also
relevant to OA. When infiltrated into human OA cartilage, BPG10 was also localized in the PCM, and enhanced
the local PCM modulus, indicating a potential for restoring degenerative PCM and rescuing disrupted
chondrocyte mechanosensitive activities. Given that the synthetic PAA core is not susceptible to physiologic
enzymes, as are natural proteoglycans, BPG10 could also be resistant to chondrocyte catabolism in vivo. Our
central hypothesis is that biomimetic proteoglycans will molecularly engineer the PCM, increasing the
micromodulus of the PCM through interactions with native PCM molecules, thus promoting chondrocyte
mechanotransduction and attenuating OA-induced cartilage degeneration. To test this hypothesis, we will: (1)
study the physical interactions between BPG10 and cartilage matrix biomolecules; (2) determine if BPG10
augments the neo-PCM of chondrocytes in 3D culture and the PCM of degrading cartilage explants, and thus,
modulates chondrocyte mechanotransduction and metabolic activities and (3) test if intra-articular administration
of BPG10 attenuates the progression of OA in rabbits in vivo. In these studies, individual CS-GAGs will be tested
as a control to examine the role of BPG10's unique structure.
摘要
骨关节炎软骨的再生在过去的五十年里一直是一个很大程度上未满足的生物医学挑战。
许多策略被用来利用细胞的合成能力来产生新的细胞外
基质,希望逆转与骨关节炎(OA)相关的疼痛和功能障碍,
NIH的使命是寻求有关生命系统的基础知识以及这些知识的应用
增进健康,延长寿命,减少疾病和残疾。特别令人感兴趣的是,
细胞周围基质(PCM),即软骨细胞周围的区域,由于其表现出的
在健康和OA软骨中介导软骨细胞机械转导的重要性。在OA中,
PCM的变性是疾病起始的一个主要事件,导致软骨细胞破坏,
机械传导和不可逆的软骨降解。因此,如果我们能够设计PCM的特性,
我们有可能调节软骨细胞的机械敏感性活动,反过来,
再生和/或减弱骨关节炎软骨变性。我们的仿生蛋白聚糖(BPG)
具有工程化软骨PCM的生态位效应。我们用化学方法将7-8硫酸软骨素
将糖胺聚糖(CS-GAG)连接到聚(丙烯酸)(PAA)核心(Mw ~10 kDa),产生仿生的
蛋白聚糖,BPG 10,具有模拟天然聚集蛋白聚糖的瓶刷纳米结构。当渗透到
BPG 10在体外牛软骨外植体或体内兔膝关节内注射中,
位于PCM中。这种定位导致体外PCM的微模量显著增加,
进而显著增强软骨细胞内钙信号传导活性。BPG 10的作用也是
与OA有关。当BPG 10浸润到人OA软骨中时,BPG 10也定位于PCM中,并增强
局部PCM模量,表明恢复退化PCM和挽救被破坏PCM的潜力
软骨细胞机械敏感活性。考虑到合成PAA芯不易受生理性影响,
与天然蛋白聚糖一样,BPG 10也可以在体内对软骨细胞catalysis具有抗性。我们
中心假设是,仿生蛋白聚糖将分子工程的PCM,增加
通过与天然PCM分子的相互作用增加PCM的微模量,从而促进软骨细胞
机械转导和减弱OA诱导的软骨变性。为了验证这个假设,我们将:(1)
研究BPG 10与软骨基质生物分子之间的物理相互作用;(2)确定BPG 10是否
增强3D培养中软骨细胞的新PCM和降解软骨外植体的PCM,因此,
调节软骨细胞机械传导和代谢活性,以及(3)测试关节内给药
BPG 10的含量在体内减弱了兔OA的进展。在这些研究中,将检测单个CS-GAG
作为对照,检查BPG 10独特结构的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHELE S MARCOLONGO其他文献
MICHELE S MARCOLONGO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHELE S MARCOLONGO', 18)}}的其他基金
Molecular Engineering of Cartilage PCM Mechanotransduction in Osteoarthritis Using Biomimetic Proteoglycans
使用仿生蛋白多糖进行骨关节炎软骨 PCM 机械转导的分子工程
- 批准号:
10344701 - 财政年份:2022
- 资助金额:
$ 31.24万 - 项目类别:
ELECTROSTATIC SURFACE OPTIMIZATION FOR OSSEOINTEGRATION
用于骨整合的静电表面优化
- 批准号:
2793463 - 财政年份:1998
- 资助金额:
$ 31.24万 - 项目类别:
ELECTROSTATIC SURFACE OPTIMIZATION FOR OSSEOINTEGRATION
用于骨整合的静电表面优化
- 批准号:
6055721 - 财政年份:1998
- 资助金额:
$ 31.24万 - 项目类别:
ELECTROSTATIC SURFACE OPTIMIZATION FOR OSSEOINTEGRATION
用于骨整合的静电表面优化
- 批准号:
6171196 - 财政年份:1998
- 资助金额:
$ 31.24万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 31.24万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 31.24万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 31.24万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 31.24万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 31.24万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 31.24万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 31.24万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 31.24万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 31.24万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 31.24万 - 项目类别: