Molecular Engineering of Cartilage PCM Mechanotransduction in Osteoarthritis Using Biomimetic Proteoglycans

使用仿生蛋白多糖进行骨关节炎软骨 PCM 机械转导的分子工程

基本信息

  • 批准号:
    10344701
  • 负责人:
  • 金额:
    $ 31.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-10 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Abstract Regeneration of osteoarthritic cartilage has been a largely unmet biomedical challenge for the past fifty years. Numerous strategies are being employed to harness the synthetic power of cells to generate new extracellular matrix in the hope of reversing the pain and dysfunction associated with osteoarthritis (OA), in keeping with the mission of the NIH to seek fundamental knowledge about of living systems and the application of that knowledge to enhance health, lengthen life, and reduce illness and disability. Of particular interest is the emerging role of the pericellular matrix (PCM), the region immediately surrounding the chondrocyte, due to its demonstrated importance in mediating chondrocyte mechanotransduction in both healthy and OA cartilage. In OA, degeneration of the PCM is one leading event of disease initiation, contributing to disrupted chondrocyte mechanotransduction and irreversible cartilage degradation. Thus, if we can engineer the properties of the PCM, there is a potential for us to modulate chondrocyte mechanosensitive activities, and in turn, to promote cartilage regeneration and/or to attenuate osteoarthritic cartilage degeneration. Our biomimetic proteoglycans (BPGs) have the niche effect of engineering cartilage PCM. We chemically end-attached 7-8 chondroitin sulfate glycosaminoglycans (CS-GAGs) to a poly(acrylic acid) (PAA) core (Mw ~10 kDa), resulting in a biomimetic proteoglycan, BPG10, with a bottle-brush nanostructure mimicking the native aggrecan. When infiltrated into bovine cartilage explants in vitro or intra-articularly injected into rabbit knees in vivo, BPG10 was preferentially localized in the PCM. This localization led to a significant increase in the micromodulus of the PCM in vitro, and in turn, significantly enhanced chondrocyte intracellular calcium signaling activities. The role of BPG10 is also relevant to OA. When infiltrated into human OA cartilage, BPG10 was also localized in the PCM, and enhanced the local PCM modulus, indicating a potential for restoring degenerative PCM and rescuing disrupted chondrocyte mechanosensitive activities. Given that the synthetic PAA core is not susceptible to physiologic enzymes, as are natural proteoglycans, BPG10 could also be resistant to chondrocyte catabolism in vivo. Our central hypothesis is that biomimetic proteoglycans will molecularly engineer the PCM, increasing the micromodulus of the PCM through interactions with native PCM molecules, thus promoting chondrocyte mechanotransduction and attenuating OA-induced cartilage degeneration. To test this hypothesis, we will: (1) study the physical interactions between BPG10 and cartilage matrix biomolecules; (2) determine if BPG10 augments the neo-PCM of chondrocytes in 3D culture and the PCM of degrading cartilage explants, and thus, modulates chondrocyte mechanotransduction and metabolic activities and (3) test if intra-articular administration of BPG10 attenuates the progression of OA in rabbits in vivo. In these studies, individual CS-GAGs will be tested as a control to examine the role of BPG10's unique structure.
抽象的 在过去的五十年里,骨关节炎软骨的再生一直是一个很大程度上未得到解决的生物医学挑战。 人们正在采用多种策略来利用细胞的合成能力来产生新的细胞外物质 基质希望扭转与骨关节炎(OA)相关的疼痛和功能障碍,与 NIH 的使命是寻求有关生命系统的基础知识以及该知识的应用 增强健康、延长寿命、减少疾病和残疾。特别令人感兴趣的是新兴的角色 细胞周基质(PCM),即直接围绕软骨细胞的区域,由于其已被证明 介导健康软骨和 OA 软骨中软骨细胞机械转导的重要性。在OA中, PCM 变性是疾病发生的主要事件之一,导致软骨细胞受损 机械传导和不可逆的软骨退化。因此,如果我们能够设计 PCM 的特性, 我们有可能调节软骨细胞的机械敏感活动,进而促进软骨的生长 再生和/或减轻骨关节炎软骨退化。我们的仿生蛋白多糖 (BPG) 具有工程软骨PCM的利基效应。我们化学末端连接了 7-8 个硫酸软骨素 糖胺聚糖 (CS-GAG) 到聚丙烯酸 (PAA) 核心 (Mw ~10 kDa),从而产生仿生 蛋白聚糖,BPG10,具有模仿天然聚集蛋白聚糖的瓶刷纳米结构。当渗透到 体外牛软骨外植体或体内关节内注射到兔膝盖中,优先选择 BPG10 本地化在 PCM 中。这种定位导致 PCM 的体外微模量显着增加,并且 反过来,显着增强软骨细胞胞内钙信号传导活性。 BPG10的作用还在于 与OA相关。当 BPG10 渗透到人类 OA 软骨中时,BPG10 也定位于 PCM 中,并且增强 局部 PCM 模量,表明具有恢复退化 PCM 和拯救受损的潜力 软骨细胞机械敏感活动。鉴于合成 PAA 核心不易受生理影响 与天然蛋白聚糖一样,BPG10 也可以抵抗体内软骨细胞的分解代谢。我们的 中心假设是仿生蛋白多糖将对 PCM 进行分子改造,提高 通过与天然 PCM 分子的相互作用提高 PCM 的微模量,从而促进软骨细胞 机械传导和减轻 OA 引起的软骨变性。为了检验这个假设,我们将:(1) 研究 BPG10 和软骨基质生物分子之间的物理相互作用; (2)判断是否BPG10 增强 3D 培养中软骨细胞的 neo-PCM 和降解软骨外植体的 PCM,因此, 调节软骨细胞机械转导和代谢活动,以及 (3) 测试关节内给药是否有效 BPG10 可以减轻兔子体内 OA 的进展。在这些研究中,将测试单个 CS-GAG 作为对照来考察BPG10独特结构的作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHELE S MARCOLONGO其他文献

MICHELE S MARCOLONGO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHELE S MARCOLONGO', 18)}}的其他基金

Molecular Engineering of Cartilage PCM Mechanotransduction in Osteoarthritis Using Biomimetic Proteoglycans
使用仿生蛋白多糖进行骨关节炎软骨 PCM 机械转导的分子工程
  • 批准号:
    10663163
  • 财政年份:
    2022
  • 资助金额:
    $ 31.17万
  • 项目类别:
ELECTROSTATIC SURFACE OPTIMIZATION FOR OSSEOINTEGRATION
用于骨整合的静电表面优化
  • 批准号:
    2793463
  • 财政年份:
    1998
  • 资助金额:
    $ 31.17万
  • 项目类别:
ELECTROSTATIC SURFACE OPTIMIZATION FOR OSSEOINTEGRATION
用于骨整合的静电表面优化
  • 批准号:
    6055721
  • 财政年份:
    1998
  • 资助金额:
    $ 31.17万
  • 项目类别:
ELECTROSTATIC SURFACE OPTIMIZATION FOR OSSEOINTEGRATION
用于骨整合的静电表面优化
  • 批准号:
    6171196
  • 财政年份:
    1998
  • 资助金额:
    $ 31.17万
  • 项目类别:

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
  • 批准号:
    BB/Y001427/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    $ 31.17万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 31.17万
  • 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
  • 批准号:
    10821599
  • 财政年份:
    2023
  • 资助金额:
    $ 31.17万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10841832
  • 财政年份:
    2023
  • 资助金额:
    $ 31.17万
  • 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
  • 批准号:
    10532480
  • 财政年份:
    2022
  • 资助金额:
    $ 31.17万
  • 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
  • 批准号:
    10741261
  • 财政年份:
    2022
  • 资助金额:
    $ 31.17万
  • 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
  • 批准号:
    10674894
  • 财政年份:
    2022
  • 资助金额:
    $ 31.17万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了