Big Data approaches to identifying potential sources of emerging pathogens in humans, domesticated animals and crops
利用大数据方法识别人类、家养动物和农作物中新出现的病原体的潜在来源
基本信息
- 批准号:MR/R024898/1
- 负责人:
- 金额:$ 33.01万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Emerging infectious diseases continue to pose major threats to humans, animals and plants. Recent years have seen significant outbreaks of several emerging diseases, ranging from the well-known (Ebola and Olive quick decline syndrome), to the previously little known (Zika), to the entirely novel (Schmallenberg), to name but a few. It is well established that the ability of a pathogen to infect multiple hosts, particularly hosts in different taxonomic orders or wildlife, is a risk factor for emergence in human and livestock pathogens. Emerging wild-life diseases have also been linked to 'spill-overs' from humans or domesticated animals. Despite the importance of cross-species disease transmission, there has been relatively little attention paid to which species are the most important sources cross communities (e.g., zoonotic, wild-life to domestic, plants to other kingdoms), which are the most prolific vectors, how those species acquired the pathogens, and by what means the diseases entered new species or populations. A major reason for this limited understanding is the lack of comprehensive data on the pathogens in animal and plant populations and, in most cases, poorly documented information on how they are transmitted, including to humans.In this fellowship, I will improve and exploit a novel bioinformatic resource developed at the University of Liverpool to investigate how humans, their domesticated animals and crops are connected to the pathogen reservoir in other species, and how these pathogens pass from that reservoir to the focus populations. The bioinformatic resource, developed by me with funding from BBSRC, is the Enhanced Infectious Disease Database (EID2). EID2 utilises state-of-the-art, text and data mining procedures to extract information from multiple sources, including millions of metadata records accompanying genetic sequences and scientific publications. After processing, EID2 provides evidence for over 60,000 interactions between species of hosts and pathogens and is the most comprehensive data source on the known pathogens of humans, animals, and plants and their geographical ranges.During this fellowship, I aim to investigate the factors which lead to emergence of pathogens, asking the following questions:1. What are the characteristics of the networks that connect species via shared pathogens? How central are humans and their domesticated animals and crops in these networks and which other species are each of those communities most closely connected to?2. What is the role of different pathogen transmission routes on the nature of these networks? Are the potential species-to-species transmission pathways different for direct, food-borne, water-borne and vector-borne pathogens?3. What factors determine the host ranges of pathogens? Are host species more likely to become exposed to pathogens that infect a wide range of species? From species that are closer to them genetically? Or from those species with which they often interact? 4. What are we missing? Given the networks, transmission routes and host ranges, what is the risk associated with each pathogen emerging in new species? What are the pathogens that can be prioritised as more-likely to emerge in the future?
新出现的传染病继续对人类、动物和植物构成重大威胁。近年来,一些新出现的疾病大规模爆发,从众所周知的(埃博拉和奥利弗快速衰退综合症),到以前鲜为人知的(寨卡病毒),再到全新的(施马伦贝格病毒),不一而足。众所周知,一种病原体感染多个宿主,特别是不同分类目的宿主或野生动物的能力,是人类和牲畜病原体出现的一个风险因素。新出现的野生动物疾病也与人类或家养动物的“溢出效应”有关。尽管跨物种疾病传播很重要,但相对较少关注哪些物种是跨群落最重要的来源(例如,人畜共患、野生动物到家养、植物到其他王国),哪些是最多产的媒介,这些物种如何获得病原体,以及疾病通过什么方式进入新的物种或种群。这种认识有限的一个主要原因是缺乏关于动物和植物种群中病原体的全面数据,而且在大多数情况下,关于它们如何传播(包括传播给人类)的信息记录不足。在这个奖学金项目中,我将改进和利用利物浦大学开发的一种新的生物信息学资源,研究人类、他们驯养的动物和作物如何与其他物种的病原体储存库联系在一起,以及这些病原体如何从储存库传播到重点人群。我在BBSRC的资助下开发的生物信息学资源是增强传染病数据库(EID2)。EID2利用最先进的文本和数据挖掘程序从多个来源提取信息,包括伴随基因序列和科学出版物的数百万元数据记录。经过处理后,EID2提供了超过60,000种宿主和病原体之间相互作用的证据,是关于人类、动物和植物的已知病原体及其地理范围的最全面的数据源。在此期间,我的目标是调查导致病原体出现的因素,提出以下问题:1。通过共享病原体连接物种的网络有什么特点?在这些网络中,人类及其驯养的动物和农作物有多重要?与这些群落联系最密切的还有哪些物种?不同的病原体传播途径对这些网络的性质有什么作用?直接、食源性、水传播和媒介传播病原体的潜在物种间传播途径是否不同?哪些因素决定病原体的宿主范围?宿主物种是否更容易接触到感染多种物种的病原体?从基因上更接近他们的物种那里?或者从那些经常与它们相互作用的物种中?4. 我们错过了什么?考虑到网络、传播途径和宿主范围,每种病原体在新物种中出现的风险是什么?哪些病原体在未来更有可能被优先考虑?
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying life-history patterns along the fast-slow continuum of mammalian viral carriers
识别哺乳动物病毒携带者快慢连续体的生活史模式
- DOI:10.21203/rs.3.rs-2722217/v1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Tonelli A
- 通讯作者:Tonelli A
Features that matter: evolutionary signatures that predict viral transmission routes
重要的特征:预测病毒传播途径的进化特征
- DOI:10.1101/2023.11.22.568327
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wardeh M
- 通讯作者:Wardeh M
Electronic supplementary notes and materials from Integration of shared-pathogen networks and machine learning reveals the key aspects of zoonoses and predicts mammalian reservoirs
来自共享病原体网络和机器学习集成的电子补充说明和材料揭示了人畜共患疾病的关键方面并预测了哺乳动物宿主
- DOI:10.6084/m9.figshare.11665581
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Wardeh M
- 通讯作者:Wardeh M
Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations.
- DOI:10.1038/s41467-021-24085-w
- 发表时间:2021-06-25
- 期刊:
- 影响因子:16.6
- 作者:Wardeh M;Blagrove MSC;Sharkey KJ;Baylis M
- 通讯作者:Baylis M
Predicting mammalian hosts in which novel coronaviruses can be generated
预测可产生新型冠状病毒的哺乳动物宿主
- DOI:10.1101/2020.06.15.151845
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Wardeh M
- 通讯作者:Wardeh M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maya Wardeh其他文献
Argument Based Moderation of Benefit Assessment
基于论证的效益评估调节
- DOI:
10.3233/978-1-58603-952-3-128 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Maya Wardeh;Trevor J. M. Bench;Frans Coenen - 通讯作者:
Frans Coenen
Dynamic Rule Mining for Argumentation Based Systems
基于论证的系统的动态规则挖掘
- DOI:
10.1007/978-1-84800-094-0_6 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Maya Wardeh;Trevor J. M. Bench;Frans Coenen - 通讯作者:
Frans Coenen
Arguing in Groups
分组争论
- DOI:
10.3233/978-1-60750-619-5-475 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Maya Wardeh;Frans Coenen;Trevor J. M. Bench - 通讯作者:
Trevor J. M. Bench
PISA - Pooling Information from Several Agents: Multiplayer Argumentation from Experience
PISA - 汇集来自多个代理的信息:根据经验进行多人论证
- DOI:
10.1007/978-1-84882-171-2_10 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Maya Wardeh;Trevor J. M. Bench;Frans Coenen - 通讯作者:
Frans Coenen
Arguing from experience using multiple groups of agents
根据使用多组代理的经验进行论证
- DOI:
10.1080/19462166.2010.528176 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Maya Wardeh;Trevor J. M. Bench;Frans Coenen - 通讯作者:
Frans Coenen
Maya Wardeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing Novel Bayesian Track Before Detect Approaches for Maritime Big Data Challenges
在检测方法之前开发新颖的贝叶斯轨迹应对海事大数据挑战
- 批准号:
2889729 - 财政年份:2023
- 资助金额:
$ 33.01万 - 项目类别:
Studentship
HNDS-R: Understanding Drivers of Trust in Cryptocurrency Using Big Data and Ethnographic Approaches
HNDS-R:使用大数据和人种学方法了解加密货币信任的驱动因素
- 批准号:
2242205 - 财政年份:2023
- 资助金额:
$ 33.01万 - 项目类别:
Standard Grant
Big data apprOaches fOr Safe Therapeutics in Healthy Pregnancies (BOOST-HP)
健康妊娠安全治疗的大数据方法 (BOOST-HP)
- 批准号:
10539666 - 财政年份:2022
- 资助金额:
$ 33.01万 - 项目类别:
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
- 批准号:
RGPIN-2020-07157 - 财政年份:2022
- 资助金额:
$ 33.01万 - 项目类别:
Discovery Grants Program - Individual
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10175930 - 财政年份:2021
- 资助金额:
$ 33.01万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10405522 - 财政年份:2021
- 资助金额:
$ 33.01万 - 项目类别:
Searching and Analyzing Big Data: Context-sensitive and Task-aware Approaches
搜索和分析大数据:上下文敏感和任务感知的方法
- 批准号:
RGPIN-2020-07157 - 财政年份:2021
- 资助金额:
$ 33.01万 - 项目类别:
Discovery Grants Program - Individual
Big Data Approaches to Software Energy Consumption Modeling
软件能耗建模的大数据方法
- 批准号:
RGPIN-2017-05609 - 财政年份:2021
- 资助金额:
$ 33.01万 - 项目类别:
Discovery Grants Program - Individual
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10613975 - 财政年份:2021
- 资助金额:
$ 33.01万 - 项目类别:
Collaborative Research: Network Cluster: Using Big Data approaches to assess ecohydrological resilience across scales
合作研究:网络集群:使用大数据方法评估跨尺度的生态水文恢复力
- 批准号:
2011346 - 财政年份:2020
- 资助金额:
$ 33.01万 - 项目类别:
Continuing Grant