Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
基本信息
- 批准号:10175930
- 负责人:
- 金额:$ 80.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease therapyAlzheimer’s disease biomarkerAmericanAmyloid beta-ProteinAreaBig DataBig Data MethodsBioinformaticsBiological MarkersBiomedical ResearchCellsClinicalClinical DataClinical TrialsCognitiveCommunitiesComplexCoupledDataDatabasesDiseaseDisease modelDrug CombinationsElectronic Health RecordFailureGenesGeneticGoalsGraphImageIndividualInformaticsKnowledgeKnowledge PortalLiquid substanceMachine LearningMedicineMethodsMolecularMultimodal ImagingMultiomic DataNetwork-basedOutcomePathway interactionsPharmaceutical PreparationsPharmacologyPhenotypePreventionProteinsPsychological reinforcementPublic HealthResearchResearch Project GrantsSignal TransductionSystemTherapy Clinical TrialsToxic effectTranslatingValidationWalkinganalytical methodanalytical toolanticancer researchbiomarker discoverybiomarker-drivenclinical phenotypecohortconvolutional neural networkcostdata integrationdata resourcedeep learningdrug candidatedrug developmentdrug discoverydrug repurposingdruggable targetearly detection biomarkersimprovedinformatics toolinnovationlearning strategymultiple omicsneurobiological mechanismnovelnovel strategiesphenotypic datapopulation basedpreventresponsesuccesstooltranscriptometranslational impactvirtual
项目摘要
Project Summary
Alzheimer’s disease (AD) is a major public health crisis with no available cure. Given recent failures of
many AD clinical trials, there is an urgent need for developing effective strategies to identify new AD targets for
disease modeling and new candidates for drug repurposing and development. We propose here a research
project to develop transformative big data analytic approaches in the fields of translational bioinformatics,
machine learning and deep learning to advance drug repurposing for AD. Our overarching goal is to develop
innovative machine learning and deep learning approaches as well as informatics tools and pipelines that
leverage big data in relevant biomedical domains. These big data include large-scale genetic, multi-omics,
imaging, cognitive and other phenotypic data from landmark AD studies, functional interaction data among
drugs, proteins and diseases, pharmacologic perturbation data, electronic health record data, and MarketScan
data. Our proposed computational research is aimed at developing novel translational informatics approaches
to analyze various types of molecular, clinical and other relevant data to identify individual drugs or drug
combinations with favorable efficacy and toxicity profiles as candidates for repositioning against AD or AD-
related dementia (ADRD). To achieve our goal, we have four Aims. Aim 1 is to develop network-based multi-
omics data integration methods to identify genes and pathways as novel targets for AD drug repositioning
research. Aim 2 is to develop informatics strategies to prioritize and evaluate promising candidate targets via
examining their associations with AD biomarkers and phenotypes. Aim 3 is to develop knowledge-driven drug
repurposing methods using network reinforcement and drug scoring to identify AD candidate drugs. Aim 4 is to
prioritize and evaluate the identified candidate drugs for repurposing against AD/ADRD using pharmacologic
perturbation, EHR and MarketScan data. Successful completion of these aims will produce novel translational
big data analytic methods and tools to improve our understanding of the genetic, molecular and neurobiological
mechanisms of AD, facilitate the identification of novel promising targets and drugs for repurposing, and
ultimately have a translational impact on disease treatment and prevention. These advances are fundamental
to the NIA NAPA goal of effectively treating or preventing AD/ADRD by 2025. The resulting methods and tools
are also expected to impact biomedical research in general and benefit public health outcomes.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dokyoon Kim其他文献
Dokyoon Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dokyoon Kim', 18)}}的其他基金
Methods for Enhancing Polygenic Risk Prediction Models for Complex Disease
增强复杂疾病多基因风险预测模型的方法
- 批准号:
10717244 - 财政年份:2023
- 资助金额:
$ 80.92万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10405522 - 财政年份:2021
- 资助金额:
$ 80.92万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10613975 - 财政年份:2021
- 资助金额:
$ 80.92万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10034691 - 财政年份:2020
- 资助金额:
$ 80.92万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10224747 - 财政年份:2020
- 资助金额:
$ 80.92万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10687123 - 财政年份:2020
- 资助金额:
$ 80.92万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10460229 - 财政年份:2020
- 资助金额:
$ 80.92万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10372247 - 财政年份:2020
- 资助金额:
$ 80.92万 - 项目类别:
Integrating Neuroimaging, Multi-omics, and Clinical Data in Complex Disease
将神经影像、多组学和临床数据整合到复杂疾病中
- 批准号:
9916801 - 财政年份:2017
- 资助金额:
$ 80.92万 - 项目类别:
Integrating Neuroimaging, Multi-omics, and Clinical Data in Complex Disease
将神经影像、多组学和临床数据整合到复杂疾病中
- 批准号:
9287487 - 财政年份:2017
- 资助金额:
$ 80.92万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 80.92万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 80.92万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 80.92万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 80.92万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 80.92万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 80.92万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 80.92万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 80.92万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 80.92万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 80.92万 - 项目类别:
Research Grant














{{item.name}}会员




