Deriving an actionable patient phenome from healthcare data

从医疗保健数据中得出可操作的患者表型

基本信息

  • 批准号:
    MR/S004149/2
  • 负责人:
  • 金额:
    $ 15.7万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Translating routinely collected health data into knowledge is a requirement of a "learning health system". Since joining the Biomedical Research Centre at the South London and Maudsley Hospital, Kings College London, my research has been focused on developing 'CogStack and SemEHR'. This is an integrated health informatics platform which aims to to unlock unstructured health records and assist in clinical decision making and research. The system does much to surface the deep data within the NHS, for example through providing a patient-centric search on semantically annotated clinical notes to support studies such as the recruitment of patients for Genomics England's 100,000 Genomes project [1,2] and predicting adverse drug reactions [3]. However, there is considerable further potential for the generation of knowledge and action, for example through the application of machine learning to the data from this platform. For instance, the data returned through these systems needs to be integrated, verified and cleaned with biomedical knowledge, enriched with an accurate clinical context (to enhance the current sentence-level language context) and aligned with the patient timeline to derive a comprehensive patient phenome. Clinical knowledge needs to be formalised from clinical ontologies and integrated with relevant open data, which will drive automated inferences to lift lower-level features (e.g. numeric blood pressure readings) up to higher-level clinical variables (e.g. hypertension) for supporting decision making.A pilot study of the comprehensive phenome model, SemEHR's medical profiles [2], evaluated on publicly accessible data from the Medical Information Mart for Intensive Care (MIMIC), has proven that better contextual information can lead to much better accuracy in making clinical conclusions - e.g. using patient medical history for subtyping atrial fibrillation where we demonstrated that such phenome data is within the top 10 key features in identifying clinically-sensible patient clusters. For 'action' generation in clinical settings, we have demonstrated the feasibility of alerts through a number of simple examples using CogStack. For example, at Kings College Hospital, we have detected abnormal pathology results for 25 patients being prescribed methotrexate for rheumatoid arthritis, preventing potentially fatal renal failure.The proposed research will devise a semantic electronic health record toolkit that is able to derive a consistent and comprehensive patient phenome from unstructured and structured electronic health records and provide semantic computation upon it to support decision making for tailored care, trial recruitment and research. References: 1. Wu H, et al. SemEHR: surfacing semantic data from clinical notes in electronic health records for tailored care, trial recruitment, and clinical research. Lancet. 2017;390: S97.2. Wu H, et al. A General-purpose Semantic Search System to Surface Semantic Data from Clinical Notes for Tailored Care, Trial Recruitment and Clinical Research. Journal of the American Medical Informatics Association. 2017; doi: https://doi.org/10.1101/235622.3. Bean DM, Wu H, et al. Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records. Sci Rep. 2017;7: 16416.
将例行收集的卫生数据转化为知识是“学习型卫生系统”的一项要求。自从加入伦敦南部的生物医学研究中心和伦敦国王学院的莫兹利医院以来,我的研究一直集中在开发“CogStack和SemEHR”上。这是一个集成的健康信息平台,旨在解锁非结构化的健康记录,并协助临床决策和研究。该系统在NHS内部的深层数据方面做了很多工作,例如通过在语义注释的临床笔记上提供以患者为中心的搜索来支持研究,例如为Genomics England的100,000 Genomes项目招募患者[1,2]和预测药物不良反应[3]。然而,在产生知识和行动方面还有相当大的进一步潜力,例如通过对来自该平台的数据应用机器学习。例如,通过这些系统返回的数据需要用生物医学知识进行整合、验证和清理,用准确的临床背景进行丰富(以增强当前的病历级语言背景),并与患者时间轴对齐,以得出全面的患者表型组。临床知识需要从临床本体中形式化,并与相关的开放数据集成,这将驱动自动推理以提升较低级别的功能(例如数字血压读数)直至更高级别的临床变量综合表型组模型的试点研究,SemEHR的医疗概况[2],根据重症监护医学信息市场(MIMIC)的公开数据进行评估,已经证明,更好的背景信息可以导致更好的准确性,使临床结论-例如,使用患者病史来对心房纤颤进行分型,其中我们证明了这样的表型组数据在识别临床上敏感的患者群的前10个关键特征内。对于临床环境中的“动作”生成,我们已经通过使用CogStack的一些简单示例证明了警报的可行性。例如,在国王学院医院,我们发现25名因类风湿性关节炎而服用甲氨蝶呤的患者的病理结果异常,拟议的研究将设计一个语义电子健康记录工具包,该工具包能够从非结构化和结构化的电子健康记录中获得一致和全面的患者表型,并提供语义计算以支持决策进行量身定制的护理、试验招募和研究。参考文献:1. Wu H等人SemEHR:在电子健康记录中显现来自临床笔记的语义数据,用于定制护理、试验招募和临床研究。柳叶刀。2017;390:S97.2。Wu H等人,一个通用语义搜索系统,从定制护理、试验招募和临床研究的临床笔记中获取语义数据。美国医学信息学协会杂志。2017; doi:https://doi.org/10.1101/235622.3. Bean DM,Wu H,et al.未知药物不良反应的知识图预测和电子健康记录中的验证。科学代表2017;7:16416。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The reporting quality of natural language processing studies: systematic review of studies of radiology reports.
  • DOI:
    10.1186/s12880-021-00671-8
  • 发表时间:
    2021-10-02
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Davidson EM;Poon MTC;Casey A;Grivas A;Duma D;Dong H;Suárez-Paniagua V;Grover C;Tobin R;Whalley H;Wu H;Alex B;Whiteley W
  • 通讯作者:
    Whiteley W
A systematic review of natural language processing applied to radiology reports.
  • DOI:
    10.1186/s12911-021-01533-7
  • 发表时间:
    2021-06-03
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Casey A;Davidson E;Poon M;Dong H;Duma D;Grivas A;Grover C;Suárez-Paniagua V;Tobin R;Whiteley W;Wu H;Alex B
  • 通讯作者:
    Alex B
Automated clinical coding: what, why, and where we are?
  • DOI:
    10.1038/s41746-022-00705-7
  • 发表时间:
    2022-10-22
  • 期刊:
  • 影响因子:
    15.2
  • 作者:
  • 通讯作者:
Evaluation and improvement of the National Early Warning Score (NEWS2) for COVID-19: a multi-hospital study.
COVID-19 国家早期预警评分 (NEWS2) 的评估和改进:一项多医院研究
  • DOI:
    10.1186/s12916-020-01893-3
  • 发表时间:
    2021-01-21
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Carr E;Bendayan R;Bean D;Stammers M;Wang W;Zhang H;Searle T;Kraljevic Z;Shek A;Phan HTT;Muruet W;Gupta RK;Shinton AJ;Wyatt M;Shi T;Zhang X;Pickles A;Stahl D;Zakeri R;Noursadeghi M;O'Gallagher K;Rogers M;Folarin A;Karwath A;Wickstrøm KE;Köhn-Luque A;Slater L;Cardoso VR;Bourdeaux C;Holten AR;Ball S;McWilliams C;Roguski L;Borca F;Batchelor J;Amundsen EK;Wu X;Gkoutos GV;Sun J;Pinto A;Guthrie B;Breen C;Douiri A;Wu H;Curcin V;Teo JT;Shah AM;Dobson RJB
  • 通讯作者:
    Dobson RJB
ToKSA - Tokenized Key Sentence Annotation - a Novel Method for Rapid Approximation of Ground Truth for Natural Language Processing
  • DOI:
    10.1101/2021.10.06.21264629
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Fairfield;W. Cambridge;L. Cullen;T. Drake;S. Knight;N. Masson;N. Mills;R. Pius;C. A. Shaw;H. Wu;S. Wigmore;A. Spiliopoulou;E. M. Harrison
  • 通讯作者:
    C. Fairfield;W. Cambridge;L. Cullen;T. Drake;S. Knight;N. Masson;N. Mills;R. Pius;C. A. Shaw;H. Wu;S. Wigmore;A. Spiliopoulou;E. M. Harrison
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Honghan Wu其他文献

Enhancing Patient Outcome Prediction Through Deep Learning With Sequential Diagnosis Codes From Structured Electronic Health Record Data: Systematic Review
通过基于结构化电子健康记录数据的序列诊断代码的深度学习来增强患者结局预测:系统评价
  • DOI:
    10.2196/57358
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Tuankasfee Hama;Mohanad M Alsaleh;Freya Allery;Jung Won Choi;Christopher Tomlinson;Honghan Wu;Alvina Lai;Nikolas Pontikos;Johan H Thygesen
  • 通讯作者:
    Johan H Thygesen
Deep learning based prediction of depression and anxiety in patients with type 2 diabetes mellitus using regional electronic health records
利用区域电子健康记录基于深度学习对 2 型糖尿病患者抑郁和焦虑的预测
  • DOI:
    10.1016/j.ijmedinf.2025.105801
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Wei Feng;Honghan Wu;Hui Ma;Yuechuchu Yin;Zhenhuan Tao;Shan Lu;Xin Zhang;Yun Yu;Cheng Wan;Yun Liu
  • 通讯作者:
    Yun Liu
Natural language processing for detecting adverse drug events: A systematic review protocol
用于检测药物不良事件的自然语言处理:系统评价方案
  • DOI:
    10.3310/nihropenres.13504.1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Imane Guellil;Jinge Wu;Aryo Pradipta Gema;Farah Francis;Yousra Berrachedi;Nidhaleddine Chenni;Richard Tobin;Clare Llewellyn;Stella Arakelyan;Honghan Wu;Bruce Guthrie;Beatrice Alex
  • 通讯作者:
    Beatrice Alex
Adverse Childhood Experiences Identification from Clinical Notes with Ontologies and NLP
使用本体论和 NLP 从临床记录中识别不良童年经历
  • DOI:
    10.48550/arxiv.2208.11466
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinge Wu;Rowena Smith;Honghan Wu
  • 通讯作者:
    Honghan Wu
Spine-GFlow: A hybrid learning framework for robust multi-tissue segmentation in lumbar MRI without manual annotation
Spine-GFlow:一种混合学习框架,无需手动注释即可在腰椎 MRI 中实现稳健的多组织分割

Honghan Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Honghan Wu', 18)}}的其他基金

QMIA: Quantifying and Mitigating Bias affecting and induced by AI in Medicine
QMIA:量化和减轻人工智能在医学中影响和诱发的偏差
  • 批准号:
    MR/X030075/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Research Grant
Deriving an actionable patient phenome from healthcare data
从医疗保健数据中得出可操作的患者表型
  • 批准号:
    MR/S004149/1
  • 财政年份:
    2018
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Fellowship

相似海外基金

Creation of a knowledgebase of high quality assertions of the clinical actionability of somatic variants in cancer
创建癌症体细胞变异临床可行性的高质量断言知识库
  • 批准号:
    10555024
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
Non-invasive detection of tumor NTRK gene fusions via rapid, efficient and low-cost extracellular vesicle isolation method
快速、高效、低成本的细胞外囊泡分离方法无创检测肿瘤NTRK基因融合体
  • 批准号:
    10707684
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
Investigating mechanisms of bladder cancer metastasis
研究膀胱癌转移的机制
  • 批准号:
    10718278
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
  • 批准号:
    10678264
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
An actionable secretory program that drives tumor progression in a genetically defined subset of lung squamous carcinoma
一种可操作的分泌程序,可驱动基因定义的肺鳞癌亚群中的肿瘤进展
  • 批准号:
    10646979
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
Applying Population Management Best Practices to Preventive Genomic Medicine
将人口管理最佳实践应用于预防性基因组医学
  • 批准号:
    10674202
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
Expert curation of sequence variants in the proximal urea cycle genes
近端尿素循环基因序列变异的专家管理
  • 批准号:
    10630560
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
Personalized risk assessment in Neurofibromatosis Type 1
1 型神经纤维瘤病的个性化风险评估
  • 批准号:
    10621489
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
Microglial Activation and Inflammatory Endophenotypes Underlying Sex Differences of Alzheimer’s Disease
阿尔茨海默病性别差异背后的小胶质细胞激活和炎症内表型
  • 批准号:
    10755779
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
Broad Genomic Profiling in patients with advanced lung cancer: empirically assessing adoption, clinical utility, and the value of additional evidence in an evolving landscape of cancer care
晚期肺癌患者的广泛基因组分析:实证评估采用、临床效用以及在不断发展的癌症治疗领域中额外证据的价值
  • 批准号:
    10800129
  • 财政年份:
    2023
  • 资助金额:
    $ 15.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了