Investigating mechanisms of bladder cancer metastasis

研究膀胱癌转移的机制

基本信息

  • 批准号:
    10718278
  • 负责人:
  • 金额:
    $ 51.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-19 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

The major cause of bladder cancer deaths is due to metastasis, yet to date metastatic bladder cancer (mMIBC) has not been extensively studied and many salient issues remain unresolved. One of the major challenges that has hampered progress in studying mMIBC is the lack of suitable models to investigate metastatic progression in vivo. We have now generated novel genetically-engineered mouse models (GEMMs) that develop highly penetrant mMIBC. These new are based on our established GEMM, in which bladder-specific co-inactivation of the Pten and p53 tumor suppressors leads to invasive disease with a low incidence of metastasis. Crossing these Pten; p53 mice with mice harboring loss-of-function of Arid1a, an epigenetic regulator that is dysregulated in a high percentage of human bladder cancers, results in lethal bladder cancer with >80% incidence of metastasis. In addition, treatment of the Pten; p53 mice with a low dose of the carcinogen N-butyl- N-(4-hydroxybutyl)-nitrosamine (BBN) leads to mMIBC with >60% incidence. In parallel, we have implemented state-of-the-art systems biology approaches to identify mechanistic determinants—master regulators (MRs)—of metastatic progression in the GEMMs. MRs enriched in metastatic tumors in the GEMMs are conserved with human bladder cancer, and are enriched for those associated with lineage plasticity. To identify drugs that target these conserved MRs, we implemented OncoTreat, a computational algorithm that prioritizes drugs based on their ability to invert the activities of biologically-relevant MR. To validate these drugs, we have generated an extensive biobank of human patient derived organoid models. Leveraging these GEMMs, human patient derived organoids and systems approaches, we are ideally poised to investigate the hypothesis that the transition from pre-invasive to metastatic disease is driven by the sequential activities of master regulators, including for lineage plasticity, which can be elucidated and targeted by studying metastatic progression in these GEMMs. We will pursue three Specific Aims: In Aim 1, we will leverage our GEMMs of mMIBC to systematically investigate the biological processes and molecular mechanisms underlying metastatic progression in vivo. In Aim 2, we will elucidate master regulators of metastatic progression, focusing on those associated with the transition from pre- metastatic to metastatic MIBC, and/or that distinguish tumors from their corresponding metastases, metastases to different organ sites, and, as feasible, pre-metastatic clusters from overt metastases. We will prioritize MRs that are conserved with human bladder cancer, as well as those associated with lineage plasticity. In Aim 3, we will seek to identify new drugs for mMIBC using the OncoTreat algorithm to identify compounds that invert the activity of MRs of metastasis. We will prioritize candidate drugs that (1) target lineage plasticity mechanisms, and/or (2) are inferred for patients that do not have evident actionable driver mutations. Altogether, our studies will provide a comprehensive analysis of the biology, mechanisms, and treatments for mMIBC, with the translational goal of identifying new therapeutic targets that may improve patient outcomes.
膀胱癌死亡的主要原因是由于转移,迄今为止转移性膀胱癌 (mMIBC)尚未得到广泛研究,许多突出问题仍未得到解决。的一个主要 阻碍mMIBC研究进展的挑战是缺乏合适的模型进行调查 体内转移进展。我们现在已经产生了新的基因工程小鼠模型(GEMM) 开发高渗透性的mMIBC。这些新的是基于我们建立的GEMM,其中膀胱特定 Pten和p53肿瘤抑制因子的共失活导致侵袭性疾病, 转移将这些Pten; p53小鼠与携带Arid 1a(一种表观遗传调节因子)功能缺失的小鼠杂交 在高比例的人类膀胱癌中失调,导致致死性膀胱癌, 转移发生率。此外,用低剂量的致癌物N-丁基-N,N-二甲基-N, N-(4-羟丁基)-亚硝胺(BBN)导致mMIBC,发生率>60%。与此同时,我们实施了 国家的最先进的系统生物学方法,以确定机械决定因素-主调节器(MR)-的 GEMM中的转移性进展。在GEMM中转移性肿瘤中富集的MR是保守的, 人膀胱癌,并富集与谱系可塑性相关的那些。来鉴定针对 这些保守的MR,我们实现了OncoTreat,这是一种计算算法, 为了验证这些药物,我们已经生成了一个 人类患者来源的类器官模型的广泛生物库。利用这些GEMM, 类器官和系统的方法,我们是理想的准备调查的假设,从过渡到 从侵袭前到转移性疾病是由主调节因子的顺序活动驱动的,包括谱系调节因子。 可塑性,这可以通过研究这些GEMM中的转移进展来阐明和靶向。我们将 追求三个具体目标:在目标1中,我们将利用mMIBC的GEMM系统地调查 体内转移进展的生物学过程和分子机制。在目标2中,我们将 阐明转移进展的主要调节因子,重点关注与从癌前病变向癌后病变转变相关的调节因子。 转移到转移性MIBC,和/或区分肿瘤与其相应转移,转移 不同的器官部位,以及,如果可行,来自明显转移的转移前簇。我们将优先考虑MR 与人类膀胱癌以及与谱系可塑性相关的保守基因。在目标3中,我们 将寻求使用OncoTreat算法识别用于mMIBC的新药,以识别逆转mMIBC的化合物。 转移的MR活性。我们将优先考虑候选药物,(1)靶向谱系可塑性机制, 和/或(2)对于不具有明显的可操作驱动突变的患者推断。总之,我们的研究 将提供mMIBC的生物学,机制和治疗的全面分析, 翻译目标是确定可能改善患者结局的新治疗靶点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cory Abate-Shen其他文献

Cory Abate-Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cory Abate-Shen', 18)}}的其他基金

Project 2: Investigating cell intrinsic and extrinsic drivers of prostate cancer bone metastasis
项目2:研究前列腺癌骨转移的细胞内在和外在驱动因素
  • 批准号:
    10333944
  • 财政年份:
    2022
  • 资助金额:
    $ 51.68万
  • 项目类别:
Project 2: Investigating cell intrinsic and extrinsic drivers of prostate cancer bone metastasis
项目2:研究前列腺癌骨转移的细胞内在和外在驱动因素
  • 批准号:
    10612353
  • 财政年份:
    2022
  • 资助金额:
    $ 51.68万
  • 项目类别:
Modeling bladder cancer pathogenesis and tumor evolution
膀胱癌发病机制和肿瘤进化建模
  • 批准号:
    10475011
  • 财政年份:
    2018
  • 资助金额:
    $ 51.68万
  • 项目类别:
Mitochondrial and nuclear functions of NKX3.1 in regulating oxidative stress in prostate cancer
NKX3.1在调节前列腺癌氧化应激中的线粒体和核功能
  • 批准号:
    10308021
  • 财政年份:
    2018
  • 资助金额:
    $ 51.68万
  • 项目类别:
Modeling bladder cancer pathogenesis and tumor evolution
膀胱癌发病机制和肿瘤进化建模
  • 批准号:
    10218075
  • 财政年份:
    2018
  • 资助金额:
    $ 51.68万
  • 项目类别:
Core C: Administrative Core
核心 C:行政核心
  • 批准号:
    10475020
  • 财政年份:
    2018
  • 资助金额:
    $ 51.68万
  • 项目类别:
Project 2: Functions of ARID1A in muscle invasive bladder cancer
项目2:ARID1A在肌层浸润性膀胱癌中的功能
  • 批准号:
    10475016
  • 财政年份:
    2018
  • 资助金额:
    $ 51.68万
  • 项目类别:
Mitochondrial and nuclear functions of NKX3.1 in regulating oxidative stress in prostate cancer
NKX3.1在调节前列腺癌氧化应激中的线粒体和核功能
  • 批准号:
    10058251
  • 财政年份:
    2018
  • 资助金额:
    $ 51.68万
  • 项目类别:
Project 2: Functions of ARID1A in muscle invasive bladder cancer
项目2:ARID1A在肌层浸润性膀胱癌中的功能
  • 批准号:
    10218078
  • 财政年份:
    2018
  • 资助金额:
    $ 51.68万
  • 项目类别:
Core C: Administrative Core
核心 C:行政核心
  • 批准号:
    10218081
  • 财政年份:
    2018
  • 资助金额:
    $ 51.68万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 51.68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了