Predicting Atrial Fibrillation Mechanisms Through Deep Learning
通过深度学习预测心房颤动机制
基本信息
- 批准号:MR/S015086/2
- 负责人:
- 金额:$ 12.18万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Atrial fibrillation (AF) is the most common cardiac arrhythmia, affecting over 1.1 million people in the UK alone, and is associated with increased risk of other cardiovascular disease, stroke and death. Patients who do not respond to drug treatment may be treated using radio frequency catheter ablation therapy, which is used to isolate the areas of pathological tissue responsible for AF. AF patients require different amounts of treatment: some patients require multiple procedures, with more extensive ablation strategies; while for others, a more simple isolation of the pulmonary veins using radio frequency catheter ablation is sufficient. Predicting whether an ablation treatment approach is a sufficient treatment for a particular patient is a clinical challenge, which if solved could improve safety of ablation procedures, and decrease time and cost for these procedures.Computational biophysical simulations personalised to patient properties, including cardiac imaging and electrical data, may offer substantial insights into AF and how to treat it, but run too slowly to be used during clinical procedures. My objective is to develop a combined biophysical simulation and machine-learning network pipeline that accurately quantifies the likelihood of success of ablation therapies for an individual patient quickly enough for use during a clinical procedure, to guide ablation therapy. The machine-learning network will be trained to large quantities of biophysical simulated data to ensure that it correctly captures the physics and physiology of the system. The training will then be augmented with the complexity and reality of clinical data. Finally, the deep learning pipeline will be tested in a retrospective study.We hope that this study will provide a proof of concept for this predictive pipeline. Our novel approach has the potential to revolutionise the field of predictive modelling for AF by constructing a pipeline that enables patient-specific treatment approaches to be developed and applied during a single ablation procedure. We hope that in the future, clinical and research centres will be able to use the trained machine learning network to predict the factors responsible for AF in an individual patient and the outcome of different ablation procedures. This may lead to improved safety of ablation procedures, better patient selection, as well as decreased time and cost for these procedures.
心房颤动(AF)是最常见的心律失常,仅在英国就影响超过110万人,并且与其他心血管疾病、中风和死亡的风险增加有关。对药物治疗无反应的患者可以使用射频导管消融治疗,其用于隔离导致AF的病理组织区域。AF患者需要不同的治疗量:一些患者需要多次手术,采用更广泛的消融策略;而对于其他患者,使用射频导管消融进行更简单的肺静脉隔离就足够了。预测消融治疗方法是否足以治疗特定患者是一项临床挑战,如果能够解决,可以提高消融手术的安全性,并减少这些手术的时间和成本。针对患者属性(包括心脏成像和电气数据)进行个性化的计算生物物理模拟,可以提供对AF及其治疗方法的实质性见解,但是运行太慢而不能在临床过程中使用。我的目标是开发一种结合生物物理模拟和机器学习的网络管道,可以准确量化单个患者消融治疗成功的可能性,以便在临床手术中使用,以指导消融治疗。机器学习网络将接受大量生物物理模拟数据的训练,以确保它正确捕获系统的物理和生理学。然后,训练将随着临床数据的复杂性和真实性而增强。最后,深度学习管道将在回顾性研究中进行测试。我们希望这项研究将为这种预测管道提供概念验证。我们的新方法有可能通过构建一个管道来彻底改变AF的预测建模领域,该管道使患者特定的治疗方法能够在单次消融手术中开发和应用。我们希望在未来,临床和研究中心将能够使用经过训练的机器学习网络来预测个体患者中导致AF的因素以及不同消融手术的结果。这可能会提高消融手术的安全性,更好地选择患者,以及减少这些手术的时间和成本。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using machine learning to identify local cellular properties that support re-entrant activation in patient-specific models of atrial fibrillation.
- DOI:10.1093/europace/euaa386
- 发表时间:2021-03-04
- 期刊:
- 影响因子:0
- 作者:Corrado C;Williams S;Roney C;Plank G;O'Neill M;Niederer S
- 通讯作者:Niederer S
Detection of focal source and arrhythmogenic substrate from body surface potentials to guide atrial fibrillation ablation.
- DOI:10.1371/journal.pcbi.1009893
- 发表时间:2022-03
- 期刊:
- 影响因子:4.3
- 作者:Feng Y;Roney CH;Bayer JD;Niederer SA;Hocini M;Vigmond EJ
- 通讯作者:Vigmond EJ
Calibrating cardiac electrophysiology models using latent Gaussian processes on atrial manifolds.
- DOI:10.1038/s41598-022-20745-z
- 发表时间:2022-10-04
- 期刊:
- 影响因子:4.6
- 作者:Coveney, Sam;Roney, Caroline H.;Corrado, Cesare;Wilkinson, Richard D.;Oakley, Jeremy E.;Niederer, Steven A.;Clayton, Richard H.
- 通讯作者:Clayton, Richard H.
Atrial conduction velocity mapping: clinical tools, algorithms and approaches for understanding the arrhythmogenic substrate.
- DOI:10.1007/s11517-022-02621-0
- 发表时间:2022-09
- 期刊:
- 影响因子:3.2
- 作者:
- 通讯作者:
Predicting Atrial Fibrillation Recurrence by Combining Population Data and Virtual Cohorts of Patient-Specific Left Atrial Models.
- DOI:10.1161/circep.121.010253
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Roney CH;Sim I;Yu J;Beach M;Mehta A;Alonso Solis-Lemus J;Kotadia I;Whitaker J;Corrado C;Razeghi O;Vigmond E;Narayan SM;O'Neill M;Williams SE;Niederer SA
- 通讯作者:Niederer SA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caroline Roney其他文献
Performance of atrial conduction velocity algorithms with error-prone clinical measurements for the identification of atrial fibrosis
具有易错临床测量的心房传导速度算法在识别心房纤维化方面的性能
- DOI:
10.1016/j.compbiomed.2025.110119 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:6.300
- 作者:
Ali Gharaviri;Vinush Vigneswaran;Keeran Vickneson;Caroline Roney;Cesare Corrado;Sam Coveney;Kestutis Maciunas;Neil Bodagh;Magda Klis;Irum Kotadia;Iain Sim;John Whitaker;Martin Bishop;Steven Niederer;Mark O'Neill;Steven E. Williams - 通讯作者:
Steven E. Williams
In Atrial Fibrillation, Omnipolar Voltage Maps More Accurately Delineate Scar Than Bipolar Voltage Maps
在心房颤动中,单极电压图比双极电压图更准确地描绘瘢痕。
- DOI:
10.1016/j.jacep.2023.03.010 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:7.700
- 作者:
Charles Butcher;Caroline Roney;Amy Wharmby;Nikhil Ahluwalia;Anthony Chow;Pier D. Lambiase;Ross J. Hunter;Shohreh Honarbakhsh - 通讯作者:
Shohreh Honarbakhsh
4016-7. GEMELOS DIGITALES: NUEVAS ESTRATEGIAS PERSONALIZADAS DE ABLACIÓN DE FIBRILACIÓN AURICULAR
4016-7。 Gemelos Digitales:Nuevas Estrategias persunizadas deablacióndefibrilaciónauricular
- DOI:
10.1016/s0300-8932(25)00371-9 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:4.900
- 作者:
Gonzalo Ricardo Ríos Muñoz;Beatriz Aldana Sierra;Carlos López Barrera;Juan López-Dóriga Costales;Pablo Ávila Alonso;Alejandro Carta Bergaz;Francisco Cruz Pérez;Valentina Gallero Ponte;Santiago Ros Dopico;Inés Martín Martínez;Felipe Atienza Fernández;Esteban González Torrecilla;Caroline Roney;Javier Bermejo Thomas;Ángel Arenal Maíz - 通讯作者:
Ángel Arenal Maíz
Vector field heterogeneity as a novel omnipolar mapping metric for functional substrate characterization in scar-related ventricular tachycardias
向量场异质性作为一种新的全极标测指标用于瘢痕相关性室性心动过速的功能性基质特征描述
- DOI:
10.1016/j.hrthm.2024.10.066 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Johanna B. Tonko;Samuel Ruipérez-Campillo;Gema Cabero-Vidal;Eva Cabrera-Borrego;Caroline Roney;Juan Jiménez-Jáimez;José Millet;Francisco Castells;Pier D. Lambiase - 通讯作者:
Pier D. Lambiase
Omnipolar conduction velocity mapping for ventricular substrate characterization: Impact of CV estimation method and EGM type on in vivo conduction velocity measurements
用于心室基质表征的单极传导速度标测:CV 估计方法和 EGM 类型对体内传导速度测量的影响
- DOI:
10.1016/j.hrthm.2024.05.061 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:5.700
- 作者:
Johanna B. Tonko;Mahmoud Ehnesh;Edmon Vigmond;Anthony Chow;Caroline Roney;Pier D. Lambiase - 通讯作者:
Pier D. Lambiase
Caroline Roney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caroline Roney', 18)}}的其他基金
Mapping populations to patients: designing optimal ablation therapy for atrial fibrillation through simulation and deep learning of digital twins
将人群映射到患者:通过数字孪生的模拟和深度学习设计房颤的最佳消融治疗
- 批准号:
MR/W004720/1 - 财政年份:2022
- 资助金额:
$ 12.18万 - 项目类别:
Fellowship
Predicting Atrial Fibrillation Mechanisms Through Deep Learning
通过深度学习预测心房颤动机制
- 批准号:
MR/S015086/1 - 财政年份:2018
- 资助金额:
$ 12.18万 - 项目类别:
Fellowship
相似海外基金
TARGET: Health virtual twins for the personalised management of stroke related to atrial fibrillation
目标:健康虚拟双胞胎,用于房颤相关中风的个性化管理
- 批准号:
10114601 - 财政年份:2024
- 资助金额:
$ 12.18万 - 项目类别:
EU-Funded
Sustainable wearable e-textiles for remote monitoring of atrial fibrillation patients
用于远程监测心房颤动患者的可持续可穿戴电子纺织品
- 批准号:
EP/Y021096/1 - 财政年份:2024
- 资助金额:
$ 12.18万 - 项目类别:
Research Grant
Health virtual twins for the personalised management of stroke related to atrial fibrillation
健康虚拟双胞胎用于房颤相关中风的个性化管理
- 批准号:
10102834 - 财政年份:2024
- 资助金额:
$ 12.18万 - 项目类别:
EU-Funded
TARGET: Health virtual twins for the personalised management of stroke related to atrial fibrillation
目标:健康虚拟双胞胎,用于房颤相关中风的个性化管理
- 批准号:
10104001 - 财政年份:2024
- 资助金额:
$ 12.18万 - 项目类别:
EU-Funded
Identifying novel & repurposing drug targets for Atrial Fibrillation MEDicines
识别小说
- 批准号:
EP/Z000211/1 - 财政年份:2024
- 资助金额:
$ 12.18万 - 项目类别:
Research Grant
I-Corps: Wearable Magnetoelastic Generator for Atrial Fibrillation
I-Corps:用于心房颤动的可穿戴磁弹发生器
- 批准号:
2324601 - 财政年份:2023
- 资助金额:
$ 12.18万 - 项目类别:
Standard Grant
Association between atrial fibrillation and cognitive decline
心房颤动与认知能力下降之间的关联
- 批准号:
23K15136 - 财政年份:2023
- 资助金额:
$ 12.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Clarifying Pathophysiology of Atrial Fibrillation by Tissue Multi-Omics Analysis of Atrial Myocardium
通过心房心肌的组织多组学分析阐明心房颤动的病理生理学
- 批准号:
23KJ0378 - 财政年份:2023
- 资助金额:
$ 12.18万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Storytelling for Reducing Gap in AC Use in African Americans with Atrial Fibrillation
讲故事以减少患有心房颤动的非洲裔美国人使用交流电的差距
- 批准号:
10667019 - 财政年份:2023
- 资助金额:
$ 12.18万 - 项目类别:
Differences in Women and Men with Atrial Fibrillation
女性和男性房颤患者的差异
- 批准号:
10822952 - 财政年份:2023
- 资助金额:
$ 12.18万 - 项目类别: