Artificial metalloenzymes as evolvable catalysts for selective chemical synthesis
人工金属酶作为选择性化学合成的可进化催化剂
基本信息
- 批准号:MR/S017402/1
- 负责人:
- 金额:$ 142.87万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Catalysts are molecules that participate in a chemical reaction to speed it up but are not consumed in the process. They are vital to everyday life enabling scientists to make the products we need to survive - drugs, plastics, clothing. A well know catalytic example is the Haber-Borsch process which provides ammonia for fertiliser that ultimately helps feed the half the world. This man-made nitrogen fixation process requires high temperatures and pressures using 1-2% of the world's energy supply. In contrast, plants perform nitrogen fixation at ambient temperatures and pressures using metalloenzymes. Enzymes and metalloenzymes are nature's catalysts: proteins that have evolved over time to be highly selective and efficient catalysts for making a wide range of products from abundant natural resources, such as sugars, water, and air. Chemists have long sought to mimic enzymes in pursuit of the ideal catalyst for a sustainable chemical future providing for society's needs. Artificial metalloenzymes (ArMs), that combine enzymes and organometallic catalysts, present an exciting opportunity to obtain the ideal catalyst by introducing unprecedented chemical reactivity into metalloenzymes, preserving the benefits of enzymes whilst widening their synthetic utility. Metal catalysts allow a wide range of reactions to occur, including the activation of inert C-H bonds (also known as C-H functionalisation). The transformation of two C-H bonds into a C-C bond represents one of the most efficient transformations available to chemists with only two hydrogen atoms generated as waste. These reactions have enormous potential in reducing waste and also in reducing the number of chemical steps required for product formation by avoiding the need to activate the C-H bond before C-C bond creation, thus lowering the energy and time costs of synthesis.C-H functionalisation reactions are difficult to carry out selectively as many C-H bonds are present in the starting molecules and the innate selectivity of the molecule is not always the desired selectivity for product formation. By carefully modelling and designing new metal centres into protein scaffolds, I will create ArMs, which use the protein scaffold to influence the active site environment and lead to high control of selectivity. One advantage of using ArMs is that they are encoded by DNA allowing the selectivity and activity to be rapidly optimised using directed evolution - a method based on natural selection. Using this approach, I will create highly selective and active ArMs for C-H functionalisation reactions. The genetic nature of the ArMs also allows them to be transferred into bacterial cells to carry out unnatural chemical reactions within a cell. I aim to introduce these artificial metalloenzymes into novel biosynthetic pathways to provide access to unnatural 'natural' products and other complex molecules. The ArMs developed in this project will have the potential to introduce unnatural activities into living organisms, and can be applied in areas beyond chemical synthesis including energy, biomaterials and health applications.
催化剂是参与化学反应以加速反应的分子,但在此过程中不会被消耗。它们对日常生活至关重要,使科学家能够制造我们生存所需的产品-药物,塑料,服装。一个众所周知的催化例子是Haber-Borsch过程,该过程为肥料提供氨,最终帮助养活半个世界。这种人造固氮过程需要高温和高压,使用世界能源供应的1-2%。相比之下,植物在环境温度和压力下使用金属酶进行固氮。酶和金属酶是自然界的催化剂:随着时间的推移,蛋白质已经进化成为高度选择性和有效的催化剂,用于从丰富的自然资源(如糖,水和空气)中制造各种产品。长期以来,化学家们一直在寻求模拟酶,以追求理想的催化剂,为社会需求提供可持续的化学未来。人工金属酶(ArMs)是将联合收割机与有机金属催化剂结合在一起的一种新型催化剂,它通过将前所未有的化学反应性引入金属酶中,在保持酶的优点的同时拓宽其合成用途,为获得理想的催化剂提供了一个令人兴奋的机会。金属催化剂允许发生广泛的反应,包括惰性C-H键的活化(也称为C-H官能化)。两个C-H键转化为C-C键是化学家可用的最有效的转化之一,只有两个氢原子作为废物产生。这些反应在减少废物方面具有巨大的潜力,并且还在通过避免在C-C键产生之前活化C-H键的需要而减少产物形成所需的化学步骤的数量方面具有巨大的潜力,因此降低了合成的能量和时间成本。C-H官能化反应难以选择性地进行,H键存在于起始分子中,并且分子的固有选择性并不总是产物形成的所需选择性。通过仔细建模和设计新的金属中心到蛋白质支架中,我将创建ArMs,它使用蛋白质支架来影响活性位点环境,并导致对选择性的高度控制。使用ArMs的一个优点是它们由DNA编码,允许使用定向进化(一种基于自然选择的方法)快速优化选择性和活性。使用这种方法,我将创建高度选择性和活性的ArMs的C-H官能化反应。ArMs的遗传性质也允许它们被转移到细菌细胞中,在细胞内进行非自然的化学反应。我的目标是将这些人工金属酶引入到新的生物合成途径中,以提供获得非天然“天然”产物和其他复杂分子的途径。该项目开发的ArMs将有可能将非自然活动引入生物体,并可应用于化学合成以外的领域,包括能源,生物材料和健康应用。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reactivity Tuning of Metal-Free Artificial Photoenzymes through Binding Site Specific Bioconjugation
- DOI:10.1002/ejoc.202201412
- 发表时间:2023-03-10
- 期刊:
- 影响因子:2.8
- 作者:Kuckhoff, Thomas;Brewster, Richard C.;Jarvis, Amanda G.
- 通讯作者:Jarvis, Amanda G.
Macrocylases as synthetic tools for ligand synthesis: enzymatic synthesis of cyclic peptides containing metal-binding amino acids.
- DOI:10.1098/rsos.211098
- 发表时间:2021-11
- 期刊:
- 影响因子:3.5
- 作者:Brewster RC;Labeaga IC;Soden CE;Jarvis AG
- 通讯作者:Jarvis AG
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda Gail Jarvis其他文献
Amanda Gail Jarvis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 142.87万 - 项目类别:
Standard Grant
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 142.87万 - 项目类别:
Continuing Grant
In vivo polymer synthesis for therapeutic application via glycosylated artificial metalloenzymes
通过糖基化人工金属酶进行体内聚合物合成用于治疗应用
- 批准号:
24K08629 - 财政年份:2024
- 资助金额:
$ 142.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Biophysical Studies of Metalloenzymes
金属酶的生物物理研究
- 批准号:
2333907 - 财政年份:2024
- 资助金额:
$ 142.87万 - 项目类别:
Standard Grant
The development of salen-based artificial metalloenzymes for sustainable chemistry
用于可持续化学的基于萨伦的人造金属酶的开发
- 批准号:
2879480 - 财政年份:2023
- 资助金额:
$ 142.87万 - 项目类别:
Studentship
Functional Controlling of Artificial Metalloenzymes Using Synthetic Polymers
使用合成聚合物对人工金属酶进行功能控制
- 批准号:
23K13764 - 财政年份:2023
- 资助金额:
$ 142.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synthesis of Anticancer Alkaloids on Cancer Cells with Glycosylated Artificial Metalloenzymes
糖基化人工金属酶合成抗癌细胞生物碱
- 批准号:
22KJ1525 - 财政年份:2023
- 资助金额:
$ 142.87万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The antimicrobial mode of action of tropolone selective metal chelation and targeted inhibition of metalloenzymes
托酚酮选择性金属螯合和金属酶靶向抑制的抗菌作用机制
- 批准号:
BB/X511328/1 - 财政年份:2022
- 资助金额:
$ 142.87万 - 项目类别:
Training Grant
Using EPR spectroscopy to probe electron transfer in biology: from model molecular wires to complex metalloenzymes
使用 EPR 光谱探测生物学中的电子转移:从模型分子线到复杂的金属酶
- 批准号:
2755838 - 财政年份:2022
- 资助金额:
$ 142.87万 - 项目类别:
Studentship
The antimicrobial mode of action of tropolone: selective metal chelation and targeted inhibition of metalloenzymes
托酚酮的抗菌作用方式:选择性金属螯合和金属酶的靶向抑制
- 批准号:
2748721 - 财政年份:2022
- 资助金额:
$ 142.87万 - 项目类别:
Studentship