A lung-oriented controlled human infection model using live BCG to evaluate tuberculosis immunopathogenicity and vaccine efficacy (TB-CHIM).
使用活卡介苗评估结核病免疫致病性和疫苗功效的肺导向受控人类感染模型(TB-CHIM)。
基本信息
- 批准号:MR/S03563X/1
- 负责人:
- 金额:$ 273.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Tuberculosis (TB) is one of the deadliest diseases known to man. It has killed over 1 billion people in the last 2 centuries and is currently the biggest infectious disease killer globally. In 2016 there were over 10 million newly diagnosed TB cases and 1.7 million people died (worldwide 3 people die from TB every minute!). In some parts of the world, like Sub-Saharan Africa, the disease is out of control. TB most commonly affects the lungs and is transmitted through the inhalation of cough droplets, which enter the host's lung and eventually reach the air sacs (alveoli) where the infection takes root. However, if someone inhales TB bacteria it does not necessarily mean that they will develop active TB disease. In most people (~90 to 95%), the immune system is able to either kill or contain the bacteria before they develop disease. However, in ~5-10% of people, the bacteria multiply leading to TB disease. The immune system is complex with many interacting components. However, how these components work together in the lung to kill the bacteria and prevent disease development is poorly understood. Thus, it remains unclear why some people get the disease while others are protected. This is mainly because most research, up to now, involved animal models and cells from the human blood compartment, which poorly approximate what happens in the human lung. However, several lines of evidence now suggest that a type of white blood cell called a memory T-cell, if "trained", can rapidly recognise and kill the TB bacteria. New research also suggests that antibodies, once thought to have no role in protection, can interact with other cells to kill TB bacteria. We aim to investigate these specific components and how they can protect against development of disease in the human lung. This will give us clues how to design protective interventions against TB.The best way to eradicate TB is by developing an effective vaccine. Yet the current vaccine used in many countries, BCG, only protects against TB in children and offers little protection in adults, especially in countries where TB is common. About 20 new vaccines are being evaluated but the development process is very long (10 to 15 years) and expensive (about £800 million from start to finish) and most vaccines will fail in the late stages of human testing. Thus, we need a new efficient and more affordable approach, involving small numbers of patients, to choose the best vaccines to move to larger human studies. Another unresolved issue is how best to administer the vaccine. Traditionally, vaccines are given by injection in the skin but inhaling it directly into the lungs may better activate the protective responses against airborne infections like TB.Our proposed study will attempt to address these unmet needs and unresolved questions by directly infecting the lungs of different groups of test participants (each group showing a different level of susceptibility against TB) with a live weakened strain of TB (called BCG) and examining the immune response before and after infection. This is called a controlled human infection model (CHIM). Such a model more accurately reflects how a person is naturally infected with TB. CHIM has been used in the past to develop vaccines for other disease such as cholera and malaria with great success. We have recently completed a study funded by the Gates Foundation and SA-MRC using a similar model where we have infected the lungs of healthy persons with BCG and a mixture of different proteins from TB bacteria (called PPD) and examined the immune response in the lungs after 3 days. We have established the safety of this CHIM in close to 100 participants. We now need to leverage these gains by using this model to now interrogate which specific aspects of the immune system are protective, refine the system to finalise a model that can be used to triage new vaccine candidates, and to determine the best route by which to administer new vaccines.
结核病是人类所知的最致命的疾病之一,在过去的两个世纪里,它已导致超过10亿人死亡,是目前全球最大的传染病杀手。在2016年,有超过1000万新诊断的结核病病例,170万人死亡(全世界每分钟有3人死于结核病!)。在世界上的一些地区,如撒哈拉以南非洲,这种疾病已经失控。肺结核最常见的是影响肺部,通过吸入咳嗽飞沫传播,这些飞沫进入宿主的肺部,最终到达感染扎根的气囊(肺泡)。然而,如果有人吸入结核菌,并不一定意味着他们将发展为活动性结核病。在大多数人(约90%至95%)中,免疫系统能够在细菌发生疾病之前杀死或遏制细菌。然而,在约5-10%的人中,细菌繁殖导致结核病。免疫系统是复杂的,有许多相互作用的组件。然而,这些成分如何在肺部共同作用以杀死细菌并防止疾病发展,人们知之甚少。因此,目前还不清楚为什么有些人会患上这种疾病,而另一些人却受到了保护。这主要是因为到目前为止,大多数研究都涉及动物模型和来自人类血液室的细胞,这与人类肺部发生的情况很难近似。然而,一些证据表明,一种被称为记忆T细胞的白色血细胞,如果经过“训练”,可以迅速识别并杀死结核菌。新的研究还表明,曾经被认为没有保护作用的抗体可以与其他细胞相互作用以杀死结核菌。我们的目标是研究这些特定的成分,以及它们如何防止人类肺部疾病的发展。这将为我们设计预防结核病的干预措施提供线索。根除结核病的最佳方法是开发有效的疫苗。然而,目前在许多国家使用的卡介苗只能保护儿童免受结核病的侵害,对成年人几乎没有保护作用,特别是在结核病常见的国家。大约有20种新疫苗正在接受评估,但开发过程非常漫长(10至15年)且昂贵(从开始到结束约8亿英镑),大多数疫苗将在人体测试的后期阶段失败。因此,我们需要一种新的有效和更负担得起的方法,涉及少量患者,以选择最好的疫苗进行更大规模的人体研究。另一个悬而未决的问题是如何最好地接种疫苗。传统上,疫苗是通过皮肤注射给药的,但直接吸入肺部可能会更好地激活对肺结核等空气传播感染的保护性反应。我们提出的研究将试图通过直接感染不同测试参与者群体的肺部来解决这些未满足的需求和未解决的问题(每组显示出对结核病不同程度的易感性),并检查感染前后的免疫反应。这被称为受控人类感染模型(CHIM)。这种模型更准确地反映了一个人如何自然感染结核病。CHIM过去曾被用于开发霍乱和疟疾等其他疾病的疫苗,并取得了巨大成功。我们最近完成了一项由盖茨基金会和SA-MRC资助的研究,使用类似的模型,我们用BCG和来自结核菌的不同蛋白质的混合物(称为PPD)感染健康人的肺部,并在3天后检查肺部的免疫反应。我们已经在近100名参与者中确定了这种CHIM的安全性。我们现在需要利用这些成果,使用这个模型来询问免疫系统的哪些特定方面具有保护作用,完善系统以最终确定可用于筛选新疫苗候选者的模型,并确定管理新疫苗的最佳途径。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Klebsiella pneumoniae and Colistin Susceptibility Testing: Performance Evaluation for Broth Microdilution, Agar Dilution and Minimum Inhibitory Concentration Test Strips and Impact of the "Skipped Well" Phenomenon.
- DOI:10.3390/diagnostics11122352
- 发表时间:2021-12-14
- 期刊:
- 影响因子:0
- 作者:Elias R;Melo-Cristino J;Lito L;Pinto M;Gonçalves L;Campino S;Clark TG;Duarte A;Perdigão J
- 通讯作者:Perdigão J
Diagnosis of COVID-19: Considerations, controversies and challenges.
- DOI:10.7196/ajtccm.2020.v26i2.099
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Dheda K;Jaumdally S;Davids M;Chang JW;Gina P;Pooran A;Makambwa E;Esmail A;Vardas E;Preiser W
- 通讯作者:Preiser W
The child ecosystem and childhood pulmonary tuberculosis: A South African perspective.
- DOI:10.1002/ppul.25369
- 发表时间:2021-07
- 期刊:
- 影响因子:3.1
- 作者:DeAtley T;Workman L;Theron G;Bélard S;Prins M;Bateman L;Grobusch MP;Dheda K;Nicol MP;Sorsdahl K;Kuo C;Stein DJ;Zar HJ
- 通讯作者:Zar HJ
The intersecting pandemics of tuberculosis and COVID-19: population-level and patient-level impact, clinical presentation, and corrective interventions.
- DOI:10.1016/s2213-2600(22)00092-3
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Dheda K;Perumal T;Moultrie H;Perumal R;Esmail A;Scott AJ;Udwadia Z;Chang KC;Peter J;Pooran A;von Delft A;von Delft D;Martinson N;Loveday M;Charalambous S;Kachingwe E;Jassat W;Cohen C;Tempia S;Fennelly K;Pai M
- 通讯作者:Pai M
A position statement and practical guide to the use of particulate filtering facepiece respirators (N95, FFP2, or equivalent) for South African health workers exposed to respiratory pathogens including Mycobacterium tuberculosis and SARS-CoV-2.
- DOI:10.7196/ajtccm.2021.v27i4.173
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Dheda K;Charalambous S;Karat AS;von Delft A;Lalloo UG;van Zyl Smit R;Perumal R;Allwood BW;Esmail A;Wong ML;Duse AG;Richards G;Feldman C;Mer M;Nyamande K;Lalla U;Koegelenberg CFN;Venter F;Dawood H;Adams S;Ntusi NAB;van der Westhuizen HM;Moosa MS;Martinson NA;Moultrie H;Nel J;Hausler H;Preiser W;Lasersohn L;Zar HJ;Churchyard GJ
- 通讯作者:Churchyard GJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taane Clark其他文献
Taane Clark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taane Clark', 18)}}的其他基金
AI assisted genomic profiling for the personalisation of treatment and control of infections
人工智能辅助基因组分析,实现个性化治疗和感染控制
- 批准号:
MR/X005895/1 - 财政年份:2022
- 资助金额:
$ 273.57万 - 项目类别:
Research Grant
Using whole genome sequencing to reveal malaria parasite genetic diversity and drug resistance in Vietnam
利用全基因组测序揭示越南疟原虫遗传多样性和耐药性
- 批准号:
MR/R026297/1 - 财政年份:2020
- 资助金额:
$ 273.57万 - 项目类别:
Research Grant
Serological tools for COVID-19 control and vaccine roll-out in Southeast Asia
用于在东南亚控制 COVID-19 和疫苗推广的血清学工具
- 批准号:
MR/V036890/1 - 财政年份:2020
- 资助金额:
$ 273.57万 - 项目类别:
Research Grant
Using host-responses and pathogen genomics to improve diagnostics for tuberculosis in Bandung, Indonesia
利用宿主反应和病原体基因组学来改进印度尼西亚万隆的结核病诊断
- 批准号:
MR/S01988X/1 - 财政年份:2019
- 资助金额:
$ 273.57万 - 项目类别:
Research Grant
Using host-responses and pathogen genomics to improve diagnostics for tuberculosis in the Philippines
利用宿主反应和病原体基因组学改进菲律宾结核病的诊断
- 批准号:
MR/R025576/1 - 财政年份:2018
- 资助金额:
$ 273.57万 - 项目类别:
Research Grant
Using genomics to trace Salmonella transmission and antimicrobial resistance (AMR) in the poultry and swine food chains in the Philippines
利用基因组学追踪菲律宾家禽和猪食物链中的沙门氏菌传播和抗菌素耐药性 (AMR)
- 批准号:
BB/R013063/1 - 财政年份:2018
- 资助金额:
$ 273.57万 - 项目类别:
Research Grant
Using whole genome sequencing to characterise drug resistant Mycobacterium tuberculosis in Thailand
使用全基因组测序来表征泰国的耐药结核分枝杆菌
- 批准号:
MR/R020973/1 - 财政年份:2018
- 资助金额:
$ 273.57万 - 项目类别:
Research Grant
Understanding the transmission of tuberculosis using Mycobacterium tuberculosis sequence data
使用结核分枝杆菌序列数据了解结核病的传播
- 批准号:
MR/N010469/1 - 财政年份:2016
- 资助金额:
$ 273.57万 - 项目类别:
Research Grant
Zika: Zika virus surveillance in human and mosquito populations in Cape Verde
寨卡:佛得角人类和蚊子种群中的寨卡病毒监测
- 批准号:
MC_PC_15103 - 财政年份:2016
- 资助金额:
$ 273.57万 - 项目类别:
Intramural
Geographic genetic profiling of human Plasmodium malaria
人类疟原虫疟疾的地理遗传图谱
- 批准号:
MR/M01360X/1 - 财政年份:2015
- 资助金额:
$ 273.57万 - 项目类别:
Research Grant
相似国自然基金
炭包覆纳米晶的"Oriented Attachment"生长及其多维结构构筑
- 批准号:51572015
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Personalizing Post-Polypectomy Surveillance for Colorectal Cancer Prevention
个性化息肉切除术后监测以预防结直肠癌
- 批准号:
10734405 - 财政年份:2023
- 资助金额:
$ 273.57万 - 项目类别:
Mentoring in Translational Research to Prevent Disparities in Childhood Obesity and Cardiometabolic Disease
指导转化研究以防止儿童肥胖和心血管代谢疾病的差异
- 批准号:
10722684 - 财政年份:2023
- 资助金额:
$ 273.57万 - 项目类别:
2/2: PREcision VENTilation to attenuate Ventilation-Induced Lung Injury (PREVENT VILI)
2/2:精确通气以减轻通气引起的肺损伤(预防 VILI)
- 批准号:
10738959 - 财政年份:2023
- 资助金额:
$ 273.57万 - 项目类别:
The Role of Iron Deficiency in COPD Morbidity
缺铁在慢性阻塞性肺病发病中的作用
- 批准号:
10750003 - 财政年份:2023
- 资助金额:
$ 273.57万 - 项目类别:
Evolution and resolution of ARDS molecular phenotypes
ARDS 分子表型的进化和解析
- 批准号:
10592022 - 财政年份:2023
- 资助金额:
$ 273.57万 - 项目类别:
Early Identification Of Developmental Delay Among Infants And Toddlers With Sickle Cell Disease
早期识别患有镰状细胞病的婴儿和幼儿发育迟缓
- 批准号:
10590311 - 财政年份:2023
- 资助金额:
$ 273.57万 - 项目类别:
Improving diagnosis of heart failure with preserved ejection fraction in primary care.
在初级保健中通过保留射血分数改善心力衰竭的诊断。
- 批准号:
10738561 - 财政年份:2023
- 资助金额:
$ 273.57万 - 项目类别:
Validation of a pediatric thrombosis risk assessment model and characterization of bleeding in hospitalized children through the Children's Hospital Acquired Thrombosis (CHAT) Consortium
通过儿童医院获得性血栓 (CHAT) 联盟验证儿科血栓风险评估模型和住院儿童出血特征
- 批准号:
10426594 - 财政年份:2022
- 资助金额:
$ 273.57万 - 项目类别:
Rise-HP: Reimagining Interventions for Support and Education in Hypersensitivity Pneumonitis; A Stakeholder Engaged Intervention to Improve Health-Related Quality of Life
Rise-HP:重新构想对过敏性肺炎的支持和教育干预措施;
- 批准号:
10427983 - 财政年份:2022
- 资助金额:
$ 273.57万 - 项目类别:
Improving Psychological Outcomes for Acute Respiratory Failure Survivors using a Self-Management Intervention
使用自我管理干预措施改善急性呼吸衰竭幸存者的心理结果
- 批准号:
10557841 - 财政年份:2022
- 资助金额:
$ 273.57万 - 项目类别: