Defining the gene regulatory mechanisms controlling the entry of human cells into naïve pluripotency

定义控制人类细胞进入原始多能性的基因调控机制

基本信息

  • 批准号:
    MR/T011769/1
  • 负责人:
  • 金额:
    $ 71.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Human pluripotent stem cells (hPSCs) are unspecialised cells that can form any tissues of the body. There is much hope that hPSCs will provide cell-based therapies for studying and treating diseases, for replacing worn out tissues, and for improving our understanding of human development. One of the recent, exiting advances in this research area has been the capture of hPSCs in different states of development. The two main states have been termed naïve and primed hPSCs to reflect their different identities. Naïve hPSCs have properties that recapitulate the cells of the human pre-implantation embryo, whereas primed hPSCs resemble cells from the embryo soon after it implants. These differences in developmental identity are important because they alter how hPSCs are controlled and respond, and also the range of cell types that the hPSCs are capable of specialising into. For example, only naïve hPSCs can efficiently turn into early placental and amnion cell types, and this is an important distinction because these specialised cell types are naturally anti-inflammatory and anti-immunogenic which mark them out as potentially useful sources for cell-based therapies. We currently know little about how naïve hPSCs are controlled and stabilised, but it is important that we find out so that we can exploit the full potential of these cells. In our research so far, we have made exciting progress towards understanding how human cells can be converted into a naïve state during a process called reprogramming. My group has completed a large screen to identify the genes that are needed for naïve hPSC reprogramming, and also the genes that act normally to impede reprogramming. Interestingly, the top 'hits' in our completed screen identified many or all of the components within the same small number of complexes, strongly implicating these complexes as having important roles in this process. These complexes have not been studied before in naïve hPSCs or in reprogramming human cells. This work has led us to form the specific hypothesis that two complexes, called PRC1.3 and SAGA, are required to activate a set of critical genes during the initiation of reprogramming, and this activation is counteracted by an inhibitory pathway called HDAC2. The overall aim in this research proposal, therefore, is to discover how these newly identified complexes control naïve hPSC reprogramming, and to use this knowledge to develop methods to improve naïve hPSC production. We have carefully planned three main objectives to test our hypothesis:The first and second objectives are to determine why the PRC1.3 and SAGA complexes are essentially required for naïve hPSC reprogramming. We will achieve this by identifying the genes that the two complexes need to activate during reprogramming, whether they function by transferring 'activating marks' to the genome, and by asking what happens precisely to cells that lack either of the complexes.The third objective is to investigate a pathway that acts normally to impede the reprogramming process and we will focus on HDAC2. We predict that HDAC2 normally restricts naïve hPSC generation by removing the 'activation marks' that are required to promote transcriptional activation and effective reprogramming. We will use chemical inhibitors of HDAC2 to ask what happens when we prevent HDAC2 from working, and we will follow up on existing leads to identify the other factors required for HDAC2 to do this. The successful completion of this research will develop strategies to understand and overcome critical barriers of naïve hPSC reprogramming, leading to improved conditions for naïve hPSC reprogramming and proliferation. More generally, the identified processes are likely to be co-opted in other situations to activate stem cell pathways in disease or are involved in the onset of human developmental disorders, and so the new mechanisms we uncover could be investigated in these other contexts.
人类多能干细胞(hPSC)是可以形成身体任何组织的非特化细胞。hPSC有望为研究和治疗疾病提供基于细胞的疗法,用于替换磨损的组织,并提高我们对人类发育的理解。该研究领域的最新进展之一是捕获不同发育状态的hPSC。这两个主要国家被称为幼稚和准备好的hPSC,以反映它们不同的身份。幼稚的hPSC具有重现人类植入前胚胎细胞的特性,而引发的hPSC类似于植入后不久的胚胎细胞。这些发育特性的差异很重要,因为它们改变了hPSC的控制和反应方式,以及hPSC能够特异化的细胞类型的范围。例如,只有幼稚的hPSC可以有效地转化为早期胎盘和羊膜细胞类型,这是一个重要的区别,因为这些专门的细胞类型天然具有抗炎和抗免疫原性,这使它们成为基于细胞的疗法的潜在有用来源。我们目前对幼稚hPSC是如何控制和稳定的知之甚少,但重要的是我们要找到答案,以便我们能够充分利用这些细胞的潜力。到目前为止,在我们的研究中,我们已经取得了令人兴奋的进展,了解了人类细胞如何在称为重编程的过程中转化为幼稚状态。我的团队已经完成了一个大的筛选,以确定幼稚hPSC重编程所需的基因,以及正常情况下阻碍重编程的基因。有趣的是,在我们完成的筛选中,最高的“命中”识别了相同少量复合物中的许多或所有组分,强烈暗示这些复合物在此过程中具有重要作用。这些复合物之前尚未在幼稚hPSC或重编程人类细胞中进行过研究。这项工作使我们形成了一个特定的假设,即在重编程启动期间,需要两种称为PRC1.3和佐贺的复合物来激活一组关键基因,并且这种激活被称为HDAC2的抑制途径抵消。因此,这项研究提案的总体目标是发现这些新鉴定的复合物如何控制幼稚hPSC重编程,并利用这些知识开发改善幼稚hPSC生产的方法。我们仔细计划了三个主要目标来测试我们的假设:第一个和第二个目标是确定为什么PRC1.3和佐贺复合物是幼稚hPSC重编程所必需的。我们将通过识别这两种复合物在重编程过程中需要激活的基因,它们是否通过将“激活标记”转移到基因组来发挥作用,以及通过询问缺乏这两种复合物的细胞会发生什么来实现这一目标。第三个目标是调查正常情况下阻碍重编程过程的途径,我们将专注于HDAC2。我们预测HDAC2通常通过去除促进转录激活和有效重编程所需的“激活标记”来限制幼稚hPSC的产生。我们将使用HDAC2的化学抑制剂来询问当我们阻止HDAC2工作时会发生什么,我们将跟踪现有的线索,以确定HDAC2所需的其他因素。这项研究的成功完成将制定战略,以了解和克服幼稚hPSC重编程的关键障碍,从而改善幼稚hPSC重编程和增殖的条件。更一般地说,所确定的过程很可能在其他情况下被增选以激活疾病中的干细胞通路或参与人类发育障碍的发作,因此我们发现的新机制可以在这些其他背景下进行研究。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Widespread reorganisation of pluripotent factor binding and gene regulatory interactions between human pluripotent states.
  • DOI:
    10.1038/s41467-021-22201-4
  • 发表时间:
    2021-04-07
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Chovanec P;Collier AJ;Krueger C;Várnai C;Semprich CI;Schoenfelder S;Corcoran AE;Rugg-Gunn PJ
  • 通讯作者:
    Rugg-Gunn PJ
Epigenetic dynamics during capacitation of naïve human pluripotent stem cells.
  • DOI:
    10.1126/sciadv.adg1936
  • 发表时间:
    2023-09-29
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    de Sousa, Joao Agostinho;Wong, Chee-Wai;Dunkel, Ilona;Owens, Thomas;Voigt, Philipp;Hodgson, Adam;Baker, Duncan;Schulz, Edda G.;Reik, Wolf;Smith, Austin;Rostovskaya, Maria;von Meyenn, Ferdinand
  • 通讯作者:
    von Meyenn, Ferdinand
Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells.
  • DOI:
    10.1038/s41467-022-31198-3
  • 发表时间:
    2022-06-20
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
  • 通讯作者:
TGFß signalling is required to maintain pluripotency of human naïve pluripotent stem cells
TGFα信号传导是维持人类幼稚多能干细胞的多能性所必需的
  • DOI:
    10.17863/cam.74868
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Osnato A
  • 通讯作者:
    Osnato A
Dbx2, an Aging-Related Homeobox Gene, Inhibits the Proliferation of Adult Neural Progenitors.
  • DOI:
    10.1007/s12015-023-10600-7
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Giuliani, Andrea;Licursi, Valerio;Nisi, Paola S.;Fiore, Mario;D'Angelo, Sara;Biagioni, Stefano;Negri, Rodolfo;Rugg-Gunn, Peter J.;Cacci, Emanuele;Lupo, Giuseppe
  • 通讯作者:
    Lupo, Giuseppe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Rugg-Gunn其他文献

Peter Rugg-Gunn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Rugg-Gunn', 18)}}的其他基金

Epigenetic regulation of lineage competence in human pluripotent stem cells
人类多能干细胞谱系能力的表观遗传调控
  • 批准号:
    MR/V02969X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 71.06万
  • 项目类别:
    Research Grant
US Partnering Award: Cellular heterogeneity, signalling and decision-making in human pluripotent stem cells
美国合作奖:人类多能干细胞的细胞异质性、信号传导和决策
  • 批准号:
    BB/R021341/1
  • 财政年份:
    2018
  • 资助金额:
    $ 71.06万
  • 项目类别:
    Research Grant
16ALERT: BD FACS-Aria Fusion - strengthening the cell sorting capabilities of Babraham Institute Flow Core to enrich world-class science
16ALERT:BD FACS-Aria Fusion - 加强 Babraham Institute Flow Core 的细胞分选能力,丰富世界一流的科学
  • 批准号:
    BB/R00076X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 71.06万
  • 项目类别:
    Research Grant
Characterisation of a novel NANOG / KDM4B complex to regulate heterochromatin function and chromosome stability in pluripotent stem cells
调节多能干细胞异染色质功能和染色体稳定性的新型 NANOG / KDM4B 复合物的表征
  • 批准号:
    BB/M022285/1
  • 财政年份:
    2015
  • 资助金额:
    $ 71.06万
  • 项目类别:
    Research Grant

相似国自然基金

Got2基因对浆细胞样树突状细胞功能的调控及其在系统性红斑狼疮疾病中的作用研究
  • 批准号:
    82371801
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
Pik3r2基因突变在家族内侧颞叶癫痫中的作用及发病机制研究
  • 批准号:
    82371454
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
基于FCER1G基因介导免疫反应探讨迟发性聋与认知障碍相关性的机制研究
  • 批准号:
    82371141
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
发展基因编码的荧光探针揭示趋化因子CXCL10的时空动态及其调控机制
  • 批准号:
    32371150
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
22q11.2染色体微重复影响TOP3B表达并导致腭裂发生的机制研究
  • 批准号:
    82370906
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
lncGEI诱导湖羊卵巢颗粒细胞E2合成的分子机制
  • 批准号:
    32372856
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
RET基因634位点不同氨基酸改变对甲状腺C细胞的影响与机制研究
  • 批准号:
    82370790
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
KMT2A基因突变通过DNMT3靶向调控GBP2导致神经发育障碍的机制研究
  • 批准号:
    82371867
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
综合医疗机构引入Gene-Xpert MTB/RIF技术早期发现传染性肺结核和耐药肺结核的研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Brahma related gene 1/Lamin B1通路在糖尿病肾脏疾病肾小管上皮细胞衰老中的作用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
  • 批准号:
    10762273
  • 财政年份:
    2023
  • 资助金额:
    $ 71.06万
  • 项目类别:
Defining the developmental mechanisms of pericardium formation
定义心包形成的发育机制
  • 批准号:
    10605059
  • 财政年份:
    2023
  • 资助金额:
    $ 71.06万
  • 项目类别:
Defining the universal genomic language of hallmarks in tumor development
定义肿瘤发展标志的通用基因组语言
  • 批准号:
    10681670
  • 财政年份:
    2023
  • 资助金额:
    $ 71.06万
  • 项目类别:
Defining the role of GNAS in gastrointestinal metastasis
定义 GNAS 在胃肠道转移中的作用
  • 批准号:
    10644197
  • 财政年份:
    2023
  • 资助金额:
    $ 71.06万
  • 项目类别:
Defining architecture of EC coupling machinery in situ
现场定义 EC 耦合机械的架构
  • 批准号:
    10711223
  • 财政年份:
    2023
  • 资助金额:
    $ 71.06万
  • 项目类别:
Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
项目 1:定义 MICAL 依赖性胰腺癌细胞迁移机制
  • 批准号:
    10762144
  • 财政年份:
    2023
  • 资助金额:
    $ 71.06万
  • 项目类别:
Defining pro-metastatic and endothelial-regulatory roles for LIN28B in hepatocellular carcinoma
定义 LIN28B 在肝细胞癌中的促转移和内皮调节作用
  • 批准号:
    10865508
  • 财政年份:
    2023
  • 资助金额:
    $ 71.06万
  • 项目类别:
Defining and perturbing gene regulatory dynamics in the developing human brain
定义和扰乱人类大脑发育中的基因调控动态
  • 批准号:
    10658683
  • 财政年份:
    2023
  • 资助金额:
    $ 71.06万
  • 项目类别:
Defining the cellular dynamics that orchestrate alveolar epithelial cell repair behaviors in live mammal
定义协调活体哺乳动物肺泡上皮细胞修复行为的细胞动力学
  • 批准号:
    10556676
  • 财政年份:
    2023
  • 资助金额:
    $ 71.06万
  • 项目类别:
Defining post-transcriptional gene regulation in FMRP-deficiency usingmiRNA:target chimeras
使用 miRNA:目标嵌合体定义 FMRP 缺陷的转录后基因调控
  • 批准号:
    10586591
  • 财政年份:
    2023
  • 资助金额:
    $ 71.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了