Big data analysis of electronic hospital records: inpatient trajectories and pharmacological exposures associated with mortality in older adults.

电子医院记录的大数据分析:与老年人死亡率相关的住院轨迹和药物暴露。

基本信息

  • 批准号:
    MR/T023902/1
  • 负责人:
  • 金额:
    $ 43.67万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Admissions to National Health Service (NHS) hospitals in England have increased by 28% over the last decade and nearly half of all adults admitted are >=65 years old. Some older adults age robustly but others develop frailty, a condition characterised by reduced ability to withstand stressors such as illness. In addition, approximately a third of adult inpatients have one or more chronic health conditions, and many patients are prescribed multiple long term medications, so called 'polypharmacy'. We aim to understand how older adults use emergency hospital services and journey through the hospital from admission to discharge. We will also explore factors, particularly related to prescription medications, associated with poor hospital outcomes such as inpatient death. The World Health Organisation declared 'Medication without harm' its 3rd global patient safety challenge in 2017 and a report commissioned by the Department of Health Policy Research Programme estimated medication errors cost the NHS £98.5 million per year. Whilst medication related harm is widely recognised, more information is needed about which drugs confer the highest risk in which patients to inform safer prescribing practices. We will use data from 80 000 inpatient episodes of older adults (>/=65 years old) admitted as an emergency to one tertiary NHS hospital (Addenbrooke's Hospital, Cambridge) over four years. Data is available for large scale retrospective analysis after an electronic patient record system was introduced in 2014. Information describing all aspects of admission from patient characteristics such as age group to information pertaining to bedside observations, prescription medications and blood tests are available. These data will have many repeated measurements over the admission duration, for example blood pressure measurements taken several times each day, leading to a very large and complex dataset. Therefore, anonymised patient records will be transferred to the European Bioinformatics Institute (EBI; Wellcome Genome Campus, Hinxton, Cambridge). EBI is a leading research institution focused on developing cutting-edge technologies to process and manage 'big' data. We will employ machine learning (ML), a type of artificial intelligence capable of visualising patterns within complex data, to explore the thousands of patient examples in our dataset. We will firstly define how many different types of hospital admission describe the majority of admissions in older adults and characterise these inpatient trajectories. For example, admission episodes may be characterised by their length (short versus prolonged) or hospital operational factors such as number of ward moves. Secondly, we will use ML to study how different prescribed medications, or combinations of medications, represent a pattern that is consistently associated with inpatient death. We can use known associations, such as the use of blood thinning medications and higher likelihood of death from bleeding, to educate the ML process. ML can then identify other prescribing patterns associated with inpatient death and explore whether certain patient characteristics or types of admission make patients more vulnerable. This will build a comprehensive picture of patient, treatment and hospital factors that impact on the eventual hospital outcome. Inpatient death is our primary outcome but other outcomes such as new admission to a care home following discharge can be considered. Finally, ML can simulate how the hospital outcome might change if a hypothetical alternative treatment plan was employed. For example, medications can be substituted with an alternative treatment to see how this would change the likelihood of death occurring. This research will describe use of acute hospital services by older adults and identify potentially inappropriate medications for further study. The Northeast-Newcastle & North Tyneside research ethics service committee approved the study.
在过去十年中,英国国民健康服务(NHS)医院的入院人数增加了28%,入院的成年人中有近一半的人年龄在65岁以上。一些老年人身体健壮,但另一些人则变得虚弱,这种状况的特点是承受疾病等压力的能力下降。此外,大约三分之一的成年住院病人患有一种或多种慢性疾病,许多病人需要服用多种长期药物,即所谓的“综合用药”。我们的目标是了解老年人如何使用紧急医院服务,以及从入院到出院的整个过程。我们还将探讨与住院病人死亡等不良住院结果相关的因素,特别是与处方药相关的因素。世界卫生组织在2017年宣布“无伤害用药”是其第三个全球患者安全挑战,卫生政策研究计划部委托撰写的一份报告估计,药物错误每年使NHS损失9850万英镑。虽然与药物有关的危害已得到广泛认识,但需要更多的信息,了解哪些药物会带来最高风险,哪些患者应告知更安全的处方做法。我们将使用一所三级NHS医院(剑桥阿登布鲁克医院)在四年内作为急诊收治的80,000例住院老年人(bb0 /=65岁)的数据。2014年引入电子病历系统后,数据可用于大规模回顾性分析。信息描述入院的各个方面,从病人的特点,如年龄组的信息有关床边观察,处方药物和血液检查。这些数据将在入院期间进行多次重复测量,例如每天多次测量血压,从而形成非常大而复杂的数据集。因此,匿名患者记录将被转移到欧洲生物信息学研究所(EBI; Wellcome Genome Campus, Hinxton, Cambridge)。EBI是一家领先的研究机构,专注于开发处理和管理“大”数据的尖端技术。我们将使用机器学习(ML),一种能够在复杂数据中可视化模式的人工智能,来探索我们数据集中数千个患者的例子。我们将首先定义有多少种不同的住院类型描述了大多数老年人的住院情况,并描述了这些住院轨迹。例如,住院事件的特征可能是其长度(短与长)或医院的操作因素,如病房移动的数量。其次,我们将使用ML来研究不同的处方药物或药物组合如何代表与住院患者死亡一致相关的模式。我们可以使用已知的关联,例如使用血液稀释药物和出血死亡的可能性更高,来教育ML过程。然后,ML可以识别与住院患者死亡相关的其他处方模式,并探索某些患者特征或入院类型是否使患者更容易受到伤害。这将建立对最终医院结果产生影响的患者、治疗和医院因素的全面图景。住院患者死亡是我们的主要结果,但其他结果,如出院后再次入住养老院也可以考虑。最后,机器学习可以模拟如果采用假设的替代治疗方案,医院的结果可能会如何变化。例如,可以用另一种治疗方法代替药物,看看这将如何改变死亡发生的可能性。本研究将描述老年人急性住院服务的使用情况,并确定可能不适当的药物以供进一步研究。东北-纽卡斯尔和北泰恩赛德研究伦理服务委员会批准了这项研究。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anticholinergic Burden in Older Adult Inpatients: Patterns from Admission to Discharge and Associations with Hospital Outcomes
老年住院患者的抗胆碱能负担:从入院到出院的模式以及与医院结果的关联
  • DOI:
    10.17863/cam.66821
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Herrero-Zazo M
  • 通讯作者:
    Herrero-Zazo M
Lower mental health related quality of life precedes dementia diagnosis: findings from the EPIC-Norfolk prospective population-based study.
  • DOI:
    10.1007/s10654-023-01064-7
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Chintapalli, Renuka;Myint, Phyo K.;Brayne, Carol;Hayat, Shabina;Keevil, Victoria L.
  • 通讯作者:
    Keevil, Victoria L.
The Prognostic and Discriminatory Utility of the Clinical Frailty Scale and Modified Frailty Index Compared to Age.
Using machine learning to model older adult inpatient trajectories from electronic health records data.
  • DOI:
    10.1016/j.isci.2022.105876
  • 发表时间:
    2023-01-20
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Herrero-Zazo, Maria;Fitzgerald, Tomas;Taylor, Vince;Street, Helen;Chaudhry, Afzal N.;Bradley, John R.;Birney, Ewan;Keevil, Victoria L.
  • 通讯作者:
    Keevil, Victoria L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Victoria Keevil其他文献

Victoria Keevil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于高频信息下高维波动率矩阵估计及应用
  • 批准号:
    71901118
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
半参数空间自回归面板模型的有效估计与应用研究
  • 批准号:
    71961011
  • 批准年份:
    2019
  • 资助金额:
    16.0 万元
  • 项目类别:
    地区科学基金项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
体数据表达与绘制的新方法研究
  • 批准号:
    61170206
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
一类新Regime-Switching模型及其在金融建模中的应用研究
  • 批准号:
    11061041
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
  • 批准号:
    24K21025
  • 财政年份:
    2024
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
  • 批准号:
    24K05127
  • 财政年份:
    2024
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Deep-IRT for educational big data analysis
用于教育大数据分析的 Deep-IRT 开发
  • 批准号:
    22KJ1368
  • 财政年份:
    2023
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
  • 批准号:
    10678264
  • 财政年份:
    2023
  • 资助金额:
    $ 43.67万
  • 项目类别:
Accessing and Expanding Natural Products Chemical Diversity by Big-data Analysis and Biosynthetic Investigation
通过大数据分析和生物合成研究获取和扩大天然产物化学多样性
  • 批准号:
    10714466
  • 财政年份:
    2023
  • 资助金额:
    $ 43.67万
  • 项目类别:
RCN-UBE: Sustainable, nationwide network to promote reproducible big-data analysis in biology programs within community colleges and minority-serving institutions
RCN-UBE:可持续的全国性网络,旨在促进社区大学和少数族裔服务机构内生物学项目的可重复大数据分析
  • 批准号:
    2316223
  • 财政年份:
    2023
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Standard Grant
Leveraging complementary big data methods and patient intervention designs to optimize neural markers of adolescent cannabis use
利用互补的大数据方法和患者干预设计来优化青少年大麻使用的神经标记
  • 批准号:
    10739527
  • 财政年份:
    2023
  • 资助金额:
    $ 43.67万
  • 项目类别:
Big Data Training for Cancer Research
癌症研究大数据培训
  • 批准号:
    10880158
  • 财政年份:
    2023
  • 资助金额:
    $ 43.67万
  • 项目类别:
The Impact of Medicare on Individual Longevity: Evidence from Medicare Introduction Using Big Data
医疗保险对个人寿命的影响:使用大数据引入医疗保险的证据
  • 批准号:
    10575297
  • 财政年份:
    2023
  • 资助金额:
    $ 43.67万
  • 项目类别:
International Joint Research on Seismological Big Data Analysis Techniques Using Artificial Intelligence
人工智能地震大数据分析技术国际联合研究
  • 批准号:
    23KK0181
  • 财政年份:
    2023
  • 资助金额:
    $ 43.67万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了