Big Data Training for Cancer Research
癌症研究大数据培训
基本信息
- 批准号:10880158
- 负责人:
- 金额:$ 22.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressBasic ScienceBig DataBig Data to KnowledgeBioinformaticsBiologicalBiologyCancer BiologyCancer CenterCase StudyCause of DeathClinicalClinical Cancer CenterClinical OncologyClinical ResearchCollaborationsCollectionCommunicationCommunitiesComplementComplexComputersComputing MethodologiesCountryDataData AnalysesData SetDevelopmentDiseaseEducational CurriculumFundingGenomicsGoalsImageIndianaInfrastructureInstructionInterventionKnowledgeMalignant NeoplasmsMedicalModificationMolecularNCI Center for Cancer ResearchNCI-Designated Cancer CenterNeeds AssessmentOncologyParticipantPositioning AttributeProteomicsPublic DomainsPublished CommentResearchResearch PersonnelScienceScientistSourceStatistical MethodsSurveysSurvival AnalysisTechnical ExpertiseThe Cancer Genome AtlasTrainingTraining ProgramsTranslatingTranslationsUnited States National Institutes of HealthUniversitiesVisualizationWorkanticancer researchbench to bedsidebig-data sciencebiomarker identificationcancer typeclinical practicecomputer sciencecomputerized toolsdata resourcedata to knowledgedata toolsdensitydesigndisorder riskeducation resourcesexperiencehigh throughput technologyimprovedinteroperabilityknowledge translationlarge datasetslarge scale datametabolomicsmultidisciplinaryneoplasm resourcenovel therapeuticsprecision oncologyprogramsrisk predictionskillsstatisticssuccesstooltranscriptomicsvirtual machineweb site
项目摘要
PROJECT SUMMARY
The increasing volume of big data in cancer research has the potential to dramatically accelerate the translation
of knowledge from bench to bedside. Unfortunately, most cancer researchers are unable to: (i) utilize the valuable
big data that is readily available in the public domain, and (ii) extract knowledge from cancer big data through
communicating with computer scientists, statisticians and bioinformaticians. Traditionally, cancer researchers
are trained in the biologically related sciences that are relevant to the manifestation of the disease. This
knowledge is, and remains, critical for understanding the biological and molecular mechanisms that result in the
disease and that can be targeted for clinical intervention. However, historically, cancer researchers have not
been trained to handle large volumes of data. There was no need; there were not many approaches that were
generating large scale data. Yet, with the advent of high-throughput approaches, in particular those related to
genomics, proteomics and metabolomics, a significant gap in the training of cancer researchers has become
apparent – the need for skills in computer science and statistics to analyze big data and interpret results from
the analyses. In the absence of quantitative training for cancer researchers, a bottleneck will remain in the
translation of the large body of cancer big data to clinical practice. This need was confirmed in a needs
assessment of researchers from 95 Cancer Centers sent out last year (including all 69 NCI-Designated Cancer
Centers).
To address the need for a big data training course, the investigators propose to build on a previously NIH-funded
big data training course, to develop and deliver a new training course tailored to cancer researchers across the
country. In a partnership between the Purdue University Center for Cancer Research (PCCR), the Indiana
University Simon Cancer Center (IUSCC), and a group of traditionally trained biostatisticians, the team is in a
unique position to leverage basic and clinical cancer centers (the only two NCI-Designated Cancer Centers in
the State), to work together on this multi-disciplinary training program. In contrast to the previous successful big
data training course designed for general biomedical researchers who were novices in big data science, this new
course will target cancer researchers with the knowledge of big data value but lacking the quantitative skills
necessary to work with it. Based on case studies from both PCCR and IUSCC researchers, the goal of the
course is to help participants develop skills for managing, visualizing, analyzing, and integrating various types
of cancer big data that are publicly available. This is increasingly important as more and more precision oncology-
focused treatments are coming on line. With this customized big data training, cancer researchers can realize
the transformative potential of big data by translating it from bench to bedside.
项目摘要
癌症研究中越来越多的大数据有可能大大加速转化
从实验室到病床的知识不幸的是,大多数癌症研究人员无法:(i)利用有价值的
公共领域中随时可用的大数据,以及(ii)通过以下方式从癌症大数据中提取知识
与计算机科学家、统计学家和生物信息学家交流。传统上,癌症研究人员
接受与疾病表现相关的生物相关科学的培训。这
知识是,并仍然是,理解生物和分子机制,导致在关键
这是一种疾病,可以用于临床干预。然而,从历史上看,癌症研究人员没有
接受过处理大量数据的训练。没有必要;没有太多的方法,
产生大规模数据。然而,随着高通量方法的出现,特别是那些与
基因组学,蛋白质组学和代谢组学,在癌症研究人员的培训显着差距已成为
显然-需要计算机科学和统计学技能来分析大数据并解释
的分析。在缺乏对癌症研究人员的定量培训的情况下,
将大量癌症大数据转化为临床实践。这一需求在一个需求中得到了证实。
来自95个癌症中心的研究人员去年发出的评估(包括所有69个NCI-Designated Cancer
中心)。
为了满足大数据培训课程的需求,研究人员建议建立在以前NIH资助的
大数据培训课程,开发和提供为癌症研究人员量身定制的新培训课程,
国家在普渡大学癌症研究中心(PCCR)、印第安纳州
西蒙大学癌症中心(IUSCC)和一组传统的生物统计学家,该小组是在一个
利用基础和临床癌症中心的独特地位(美国仅有的两个NCI指定的癌症中心)
国家),共同努力,在这个多学科的培训计划。与以往成功的大
数据培训课程专为一般生物医学研究人员谁是新手在大数据科学,这个新的
该课程将针对具有大数据价值知识但缺乏定量技能的癌症研究人员
根据PCCR和IUSCC研究人员的案例研究,
本课程旨在帮助参与者发展管理、可视化、分析和整合各种类型的技能。
of cancer癌症big大data数据that are publicly公开available可用.这一点越来越重要,因为越来越精确的肿瘤学-
集中治疗即将上线通过这种定制的大数据培训,癌症研究人员可以实现
大数据的变革潜力,将其从实验室转化为临床应用。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIN ZHANG其他文献
MIN ZHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIN ZHANG', 18)}}的其他基金
Big Data Training for Translational Omics Research
转化组学研究的大数据培训
- 批准号:
9297305 - 财政年份:2015
- 资助金额:
$ 22.43万 - 项目类别:
Big Data Training for Translational Omics Research
转化组学研究的大数据培训
- 批准号:
9044406 - 财政年份:2015
- 资助金额:
$ 22.43万 - 项目类别:
Administrative Supplement to: Big Data Training for Translational Omics Research
行政补充:转化组学研究大数据培训
- 批准号:
9243817 - 财政年份:2015
- 资助金额:
$ 22.43万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 22.43万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 22.43万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 22.43万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 22.43万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 22.43万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 22.43万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 22.43万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.43万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.43万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 22.43万 - 项目类别:
Research Grant