Big Data Training for Cancer Research
癌症研究大数据培训
基本信息
- 批准号:10880158
- 负责人:
- 金额:$ 22.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressBasic ScienceBig DataBig Data to KnowledgeBioinformaticsBiologicalBiologyCancer BiologyCancer CenterCase StudyCause of DeathClinicalClinical Cancer CenterClinical OncologyClinical ResearchCollaborationsCollectionCommunicationCommunitiesComplementComplexComputersComputing MethodologiesCountryDataData AnalysesData SetDevelopmentDiseaseEducational CurriculumFundingGenomicsGoalsImageIndianaInfrastructureInstructionInterventionKnowledgeMalignant NeoplasmsMedicalModificationMolecularNCI Center for Cancer ResearchNCI-Designated Cancer CenterNeeds AssessmentOncologyParticipantPositioning AttributeProteomicsPublic DomainsPublished CommentResearchResearch PersonnelScienceScientistSourceStatistical MethodsSurveysSurvival AnalysisTechnical ExpertiseThe Cancer Genome AtlasTrainingTraining ProgramsTranslatingTranslationsUnited States National Institutes of HealthUniversitiesVisualizationWorkanticancer researchbench to bedsidebig-data sciencebiomarker identificationcancer typeclinical practicecomputer sciencecomputerized toolsdata resourcedata to knowledgedata toolsdensitydesigndisorder riskeducation resourcesexperiencehigh throughput technologyimprovedinteroperabilityknowledge translationlarge datasetslarge scale datametabolomicsmultidisciplinaryneoplasm resourcenovel therapeuticsprecision oncologyprogramsrisk predictionskillsstatisticssuccesstooltranscriptomicsvirtual machineweb site
项目摘要
PROJECT SUMMARY
The increasing volume of big data in cancer research has the potential to dramatically accelerate the translation
of knowledge from bench to bedside. Unfortunately, most cancer researchers are unable to: (i) utilize the valuable
big data that is readily available in the public domain, and (ii) extract knowledge from cancer big data through
communicating with computer scientists, statisticians and bioinformaticians. Traditionally, cancer researchers
are trained in the biologically related sciences that are relevant to the manifestation of the disease. This
knowledge is, and remains, critical for understanding the biological and molecular mechanisms that result in the
disease and that can be targeted for clinical intervention. However, historically, cancer researchers have not
been trained to handle large volumes of data. There was no need; there were not many approaches that were
generating large scale data. Yet, with the advent of high-throughput approaches, in particular those related to
genomics, proteomics and metabolomics, a significant gap in the training of cancer researchers has become
apparent – the need for skills in computer science and statistics to analyze big data and interpret results from
the analyses. In the absence of quantitative training for cancer researchers, a bottleneck will remain in the
translation of the large body of cancer big data to clinical practice. This need was confirmed in a needs
assessment of researchers from 95 Cancer Centers sent out last year (including all 69 NCI-Designated Cancer
Centers).
To address the need for a big data training course, the investigators propose to build on a previously NIH-funded
big data training course, to develop and deliver a new training course tailored to cancer researchers across the
country. In a partnership between the Purdue University Center for Cancer Research (PCCR), the Indiana
University Simon Cancer Center (IUSCC), and a group of traditionally trained biostatisticians, the team is in a
unique position to leverage basic and clinical cancer centers (the only two NCI-Designated Cancer Centers in
the State), to work together on this multi-disciplinary training program. In contrast to the previous successful big
data training course designed for general biomedical researchers who were novices in big data science, this new
course will target cancer researchers with the knowledge of big data value but lacking the quantitative skills
necessary to work with it. Based on case studies from both PCCR and IUSCC researchers, the goal of the
course is to help participants develop skills for managing, visualizing, analyzing, and integrating various types
of cancer big data that are publicly available. This is increasingly important as more and more precision oncology-
focused treatments are coming on line. With this customized big data training, cancer researchers can realize
the transformative potential of big data by translating it from bench to bedside.
项目摘要
癌症研究中的大数据量的增加有可能显着加速翻译
从长凳到床边的知识。不幸的是,大多数癌症研究人员无法:(i)利用该价值
公共领域中易于获得的大数据,以及(ii)从癌症中提取知识的大数据
与计算机科学家,统计学家和生物信息学家进行交流。传统上,癌症研究人员
接受与疾病表现相关的生物学相关科学培训。这
知识对于理解导致的生物学和分子机制至关重要
疾病,这可以针对临床干预。但是,从历史上看,癌症研究人员尚未
经过培训以处理大量数据。没有必要;没有多少方法
生成大规模数据。但是,随着高通量方法的进步,尤其是与
基因组学,蛋白质组学和代谢组学,癌症研究人员培训的显着差距已成为
显而易见的是 - 计算机科学和统计技能的需求,分析大数据并解释结果
分析。在没有针对癌症研究人员的定量培训的情况下,瓶颈将保留在
将大量癌症的大数据转换为临床实践。这种需求已得到确认
评估去年95个癌症中心的研究人员(包括所有69个NCI指定的癌症
中心)。
为了满足对大数据培训课程的需求,调查人员提议以先前的NIH资助为基础
大数据培训课程,开发并提供针对整个癌症研究人员量身定制的新培训课程
国家。在普渡大学癌症研究中心(PCCR)之间的合作关系中,印第安纳州
西蒙癌症中心(IUSCC)和一群传统培训的生物统计学家,该团队处于
独特的位置来利用基本和临床癌症中心(仅有两个NCI指定的癌症中心
国家),共同制定这个多学科培训计划。与以前的成功相反
数据培训课程是为大数据科学小说的一般生物医学研究人员设计的,这是新的
课程将以大数据价值了解癌症研究人员,但缺乏定量技能
与之合作的必要条件。基于PCCR和IUSCC研究人员的案例研究,目的
当然是为了帮助参与者发展管理,可视化,分析和整合各种类型的技能
公开可用的癌症大数据。随着越来越精确的肿瘤学 -
专注的治疗即将到来。通过这种定制的大数据培训,癌症研究人员可以意识到
大数据通过将其从长凳转换为床边的变革潜力。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIN ZHANG其他文献
MIN ZHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIN ZHANG', 18)}}的其他基金
Big Data Training for Translational Omics Research
转化组学研究的大数据培训
- 批准号:
9297305 - 财政年份:2015
- 资助金额:
$ 22.43万 - 项目类别:
Big Data Training for Translational Omics Research
转化组学研究的大数据培训
- 批准号:
9044406 - 财政年份:2015
- 资助金额:
$ 22.43万 - 项目类别:
Administrative Supplement to: Big Data Training for Translational Omics Research
行政补充:转化组学研究大数据培训
- 批准号:
9243817 - 财政年份:2015
- 资助金额:
$ 22.43万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 22.43万 - 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 22.43万 - 项目类别:
IAS 2023, the 12th IAS Conference on HIV Science, Brisbane, Australia, and virtually, 23-26 July 2023
IAS 2023,第 12 届 IAS HIV 科学会议,澳大利亚布里斯班,虚拟会议,2023 年 7 月 23-26 日
- 批准号:
10696505 - 财政年份:2023
- 资助金额:
$ 22.43万 - 项目类别:
Cancer Therapeutics and Host Response Research Program
癌症治疗和宿主反应研究计划
- 批准号:
10625756 - 财政年份:2023
- 资助金额:
$ 22.43万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 22.43万 - 项目类别: