Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
基本信息
- 批准号:MR/T043024/1
- 负责人:
- 金额:$ 180.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This transformative research fellowship will advance electrochemical carbon dioxide capture as a greenhouse gas mitigation technology.To limit global warming to 1.5C and avoid catastrophic climate change we must greatly reduce our emissions of greenhouse gases. To this end the UK has recently committed to net zero greenhouse gas emissions by the year 2050. Carbon dioxide capture and storage (CCS) is a critical technology that must be deployed at scale if the UK is to meet this goal. CCS is a process where carbon dioxide is first captured at point sources (industrial processes, fossil fuel power) or directly from the atmosphere, before subsequently being stored underground.State of the art CCS technology uses amine molecules to absorb carbon dioxide. Subsequently a large amount of energy must be supplied in the form of heat (or a vacuum) to regenerate the amines and release pure carbon dioxide for storage, thereby increasing the cost of CCS. The amine process also suffers from (i) limited carbon dioxide capacities, (ii) amine evaporation into the atmosphere and (iii) amine degradation in the presence of oxygen and other contaminant gases.This programme will explore the use of electricity to capture and release carbon dioxide as a more energy-efficient method of CCS that can overcome the limitations of amines. In electrochemical carbon dioxide capture, the charging of an energy storage device such as a battery or a supercapacitor causes the selective absorption of carbon dioxide. When the device is discharged, pure carbon dioxide is released (for subsequent storage), and much of the energy supplied during charging is recovered. Initial work suggests that this technology may be more energy-efficient than existing approaches, and there is still vast room for improvement, especially if the molecular mechanisms of capture can be understood and manipulated.We will (i) advance the understanding of electrochemical carbon dioxide capture and (ii) discover new materials and devices that capture carbon dioxide more efficiently. Specifically we will focus on electrochemical carbon dioxide capture by (i) supercapacitors and (ii) batteries. We will measure the amount of carbon dioxide that can be captured by these devices and we will vary the structures of the materials used to guide their improvement. A proper understanding of the molecular mechanism of electrochemical carbon dioxide capture may lead to breakthroughs for this technology. A key thrust of the programme is therefore mechanistic studies of the molecular-level capture mechanism. We will use a suite of experimental techniques to study the chemical structures of the electrode materials, and we will correlate these structures with their carbon capture properties. We will develop nuclear magnetic resonance studies that allow the molecular form of the bound carbon dioxide to be determined at different stages of the capture process. Our mechanistic studies will inform the design and synthesis of improved materials for electrochemical carbon dioxide capture. We will synthesise the next generation of materials with (i) larger carbon dioxide uptake capacities, (ii) lower energy requirements for regeneration and (iii) faster uptake rates. New technology generated by this work will be prototyped and developed into new products. The developed technology will generate clean economic growth and will help the UK meet its 2050 net-zero emissions target. The research background of ACF combined with the assembled team of partners and excellent institutional support will lead to new knowledge and technology that will make the UK world-leading in electrochemical carbon dioxide capture.
这项变革性的研究奖学金将推动电化学二氧化碳捕获作为温室气体减排技术。为了将全球变暖限制在1.5摄氏度以内,避免灾难性的气候变化,我们必须大大减少温室气体的排放。为此,英国最近承诺到2050年实现温室气体净零排放。二氧化碳捕获和储存(CCS)是一项关键技术,如果英国要实现这一目标,就必须大规模部署。CCS是一种首先从点源(工业过程、化石燃料发电)或直接从大气中捕获二氧化碳,然后将其储存在地下的过程。最先进的CCS技术使用胺分子吸收二氧化碳。随后,必须以热(或真空)的形式提供大量能量以再生胺并释放纯二氧化碳用于储存,从而增加CCS的成本。胺法还受到以下问题的影响:(一)有限的二氧化碳容量,(二)胺蒸发到大气中,(三)胺在氧气和其他污染气体存在下降解,该方案将探索利用电力捕获和释放二氧化碳,作为一种能源效率更高的CCS方法,可以克服胺的局限性。在电化学二氧化碳捕获中,能量存储装置如电池或超级电容器的充电引起二氧化碳的选择性吸收。当设备放电时,纯二氧化碳被释放(用于随后的存储),并且在充电期间提供的大部分能量被回收。初步研究表明,该技术可能比现有方法更节能,但仍有很大的改进空间,特别是如果捕获的分子机制能够被理解和操纵的话。我们将(i)推进对电化学二氧化碳捕获的理解,(ii)发现更有效地捕获二氧化碳的新材料和设备。具体来说,我们将重点关注(i)超级电容器和(ii)电池的电化学二氧化碳捕获。我们将测量这些设备可以捕获的二氧化碳量,我们将改变用于指导其改进的材料的结构。正确理解电化学捕集二氧化碳的分子机理可能会导致该技术的突破。因此,该方案的一个关键重点是分子水平捕获机制的机械研究。我们将使用一套实验技术来研究电极材料的化学结构,并将这些结构与它们的碳捕获性能相关联。我们将开发核磁共振研究,使结合二氧化碳的分子形式,以确定在捕获过程的不同阶段。我们的机理研究将为电化学二氧化碳捕获的改进材料的设计和合成提供信息。我们将合成下一代材料,这些材料具有(i)更大的二氧化碳吸收能力,(ii)更低的再生能源需求和(iii)更快的吸收速率。这项工作产生的新技术将被原型化并开发成新产品。该技术将带来清洁经济增长,并将帮助英国实现其2050年净零排放目标。ACF的研究背景与合作伙伴的组合团队和优秀的机构支持相结合,将带来新的知识和技术,使英国在电化学二氧化碳捕获方面处于世界领先地位。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Revealing carbon capture chemistry with 17-oxygen NMR spectroscopy.
通过17-氧NMR光谱法揭示了碳捕获化学。
- DOI:10.1038/s41467-022-35254-w
- 发表时间:2022-12-15
- 期刊:
- 影响因子:16.6
- 作者:Berge, Astrid H.;Pugh, Suzi M.;Short, Marion I. M.;Kaur, Chanjot;Lu, Ziheng;Lee, Jung-Hoon;Pickard, Chris J.;Sayari, Abdelhamid;Forse, Alexander C.
- 通讯作者:Forse, Alexander C.
Insights into the electric double-layer capacitance of two-dimensional electrically conductive metal-organic frameworks.
深入了解二维导电金属有机框架的双电层电容。
- DOI:10.17863/cam.72121
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Gittins J
- 通讯作者:Gittins J
Enhancing the capacity of supercapacitive swing adsorption CO 2 capture by tuning charging protocols
通过调整充电协议增强超电容变吸附CO 2 捕获能力
- DOI:10.1039/d2nr00748g
- 发表时间:2022
- 期刊:
- 影响因子:6.7
- 作者:Binford T
- 通讯作者:Binford T
Enhancing the energy storage performances of metal-organic frameworks by controlling microstructure.
通过控制微观结构增强金属有机框架的储能性能。
- DOI:10.17863/cam.87188
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gittins J
- 通讯作者:Gittins J
Understanding Electrolyte Ion Size Effects on the Performance of Conducting MOF Supercapacitors
了解电解质离子尺寸对导电 MOF 超级电容器性能的影响
- DOI:10.26434/chemrxiv-2024-p4fk2
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Gittins J
- 通讯作者:Gittins J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Forse其他文献
Alexander Forse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Forse', 18)}}的其他基金
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
- 批准号:
MR/Y034244/1 - 财政年份:2025
- 资助金额:
$ 180.89万 - 项目类别:
Fellowship
Transforming Supercapacitors by using Metal-Organic Framework Electrodes
使用金属有机框架电极改造超级电容器
- 批准号:
EP/X042693/1 - 财政年份:2023
- 资助金额:
$ 180.89万 - 项目类别:
Research Grant
Charged Adsorbents for Capture of Carbon Dioxide Directly from Air
用于直接从空气中捕获二氧化碳的带电吸附剂
- 批准号:
EP/V048090/1 - 财政年份:2021
- 资助金额:
$ 180.89万 - 项目类别:
Research Grant
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
- 批准号:
MR/Y034244/1 - 财政年份:2025
- 资助金额:
$ 180.89万 - 项目类别:
Fellowship
Improving the reproducibility of manufacturing a polymer-based electrochemical sensor
提高聚合物电化学传感器制造的再现性
- 批准号:
10073816 - 财政年份:2023
- 资助金额:
$ 180.89万 - 项目类别:
Collaborative R&D
Establishment of molecular design guidelines for enzyme mutants by principal component analysis aiming at improving enzyme electrochemical reaction
通过主成分分析建立酶突变体分子设计指南,旨在改善酶电化学反应
- 批准号:
21K14782 - 财政年份:2021
- 资助金额:
$ 180.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Understanding and Improving Electrochemical Carbon Capture by Supercapacitors
了解和改进超级电容器的电化学碳捕获
- 批准号:
2482377 - 财政年份:2020
- 资助金额:
$ 180.89万 - 项目类别:
Studentship
UNS: Improving Energy Density of Layered Vanadium Pentoxide Nanostructure for Aqueous Electrochemical Energy Storage
UNS:提高用于水相电化学储能的层状五氧化二钒纳米结构的能量密度
- 批准号:
1511014 - 财政年份:2015
- 资助金额:
$ 180.89万 - 项目类别:
Standard Grant
Improving Additive Manufactured Metal Parts Using Laser Surface Finishing and Electrochemical Machining (IMPULSE)
使用激光表面精加工和电化学加工改进增材制造的金属零件 (IMPULSE)
- 批准号:
101481 - 财政年份:2013
- 资助金额:
$ 180.89万 - 项目类别:
Collaborative R&D
A resource-saving technology for high corrosion-resistant steels by improving electrochemical property of non-metallic inclusions
提高非金属夹杂物电化学性能的高耐蚀钢资源节约技术
- 批准号:
23656447 - 财政年份:2011
- 资助金额:
$ 180.89万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of prevention technology of hydrogen absorption for steels by improving electrochemical property of non-metallic inclusions
改善非金属夹杂物电化学性能防止钢吸氢技术开发
- 批准号:
22360300 - 财政年份:2010
- 资助金额:
$ 180.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Improving in vivo electrochemical detection of neurotransmitters with novel electrode materials
利用新型电极材料改善神经递质的体内电化学检测
- 批准号:
181820-1995 - 财政年份:1998
- 资助金额:
$ 180.89万 - 项目类别:
Collaborative Project Grants (H)
Improving in vivo electrochemical detection of neurotransmitters with novel electrode materials
利用新型电极材料改善神经递质的体内电化学检测
- 批准号:
181820-1995 - 财政年份:1997
- 资助金额:
$ 180.89万 - 项目类别:
Collaborative Project Grants (H)














{{item.name}}会员




