Reprogramming adult human hepatocytes into liver progenitors with unlimited self-renewal, efficient differentiation, and transplantation capacities

将成人肝细胞重编程为具有无限自我更新、高效分化和移植能力的肝祖细胞

基本信息

  • 批准号:
    MR/V005537/1
  • 负责人:
  • 金额:
    $ 78.71万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

The liver is the largest internal organ in the body and performs ~500 tasks, including detoxification of certain substances and balancing energy metabolism. While it has an excellent regeneration capacity, chronic damage due to years of alcohol abuse or high fat diets can result in severe liver function failure. Liver transplantation is currently the only available treatment for terminal liver diseases, but the liver transplant waiting list is getting longer in recent days due to the limited number of donors and the increasing number of patients. Hepatocytes, which make up 55-68% of the liver mass, are the major players of metabolism and drug biotransformation in our body, and the use of human hepatocyte for the toxicology tests in the laboratory can reduce the numbers of animals commonly used. It will also allow more precise prediction of the drug toxicity, because different species have different metabolic activities. However, mature hepatocytes cannot be propagated in the laboratory and their supply for the toxicology tests also depends on the limited number of donors. Excitingly, recent research has enabled the conversion of the normally non-proliferative state of mature hepatocytes from rat liver to a proliferative state by using a specific culture condition in the laboratory. These 'reprogrammed' cells are in a similar state to 'hepatocyte progenitors', which transiently proliferate and then become fully functional mature hepatocytes in the developing or regenerating liver in the body. Importantly, the artificially created rat hepatocyte progenitors showed an unlimited proliferation capacity and a capacity to go back to non-proliferative, fully functional mature hepatocytes when placed in another culture condition. If the same cell state conversion, called cellular reprogramming, is successfully achieved with human hepatocytes, we can generate an unlimited number of fully functional hepatocytes from one donor. However, human hepatocyte reprogramming with the same or similar modified conditions so far have resulted in only a limited success. The hepatocyte progenitors derived from the adult human liver could proliferate only <1 month. Those from the infant liver could gain an unlimited proliferation capacity, reflecting the highly proliferative nature of neonatal hepatocytes. However, they lost the capacity to make fully functional hepatocytes, called a differentiation capacity, after 2 weeks in the dish. In order to achieve successful reprogramming of human hepatocytes into the right progenitor state, we will use techniques called genetic engineering. With this technique, we will supply multiple candidate genes, which are missing in the partially reprogrammed non-functional human progenitors when compared to the fully functional rat progenitors, to the human progenitors. This would result in fully reprogrammed human hepatocyte progenitors with an unlimited proliferation and efficient differentiation capacities in a genetic modification-dependent manner. In parallel, we will look for environmental cues that can help to maintain the reprogrammed state in the absence of the genetic manipulation. This will be performed by eliminating each one of all ~20,000 genes in the genome simultaneously in millions of cells using the state-of-the-art technology called CRISPR/Cas9 genome editing. This strategy will inform us which environmental cues are essential to maintain the reprogrammed human hepatocyte progenitors, allowing us to supplement these essential components (protein/chemicals) in the culture condition, instead of the genetic modifications. In summary, this project aims to develop a strategy to generate fully functional human liver progenitors that will be an unlimited source of fully functional mature hepatocytes, used for drug screening, toxicology tests, as well as cell therapies, in the absence of genetic modifications.
肝脏是人体最大的内脏器官,执行约500项任务,包括某些物质的解毒和平衡能量代谢。虽然它具有极好的再生能力,但由于多年酗酒或高脂肪饮食造成的慢性损害可能会导致严重的肝功能衰竭。肝移植是目前治疗终末期肝病的唯一方法,但最近几天,由于捐赠者数量有限,患者数量不断增加,等待肝移植的名单越来越长。肝细胞占肝脏质量的55-68%,是人体代谢和药物生物转化的主要参与者,利用人肝细胞进行实验室毒理试验可以减少常用动物的数量。它还将允许更准确地预测药物毒性,因为不同的物种具有不同的代谢活动。然而,成熟的肝细胞不能在实验室中繁殖,其毒理学测试的供应也取决于捐赠者的有限数量。令人兴奋的是,最近的研究通过在实验室中使用特定的培养条件,使成熟肝细胞的正常非增殖状态从大鼠肝脏转变为增殖状态。这些“重新编程”的细胞处于类似于“肝细胞前体细胞”的状态,后者在体内发育或再生的肝脏中短暂增殖,然后成为功能齐全的成熟肝细胞。重要的是,人工培养的大鼠肝细胞前体细胞显示出无限的增殖能力,并且当放置在另一种培养条件下时,能够返回到非增殖的、功能完全的成熟肝细胞。如果在人类肝细胞中成功地实现了同样的细胞状态转换,称为细胞重编程,我们可以从一个捐赠者那里产生无限数量的全功能肝细胞。然而,到目前为止,使用相同或相似修改条件的人类肝细胞重新编程只取得了有限的成功。成人肝脏来源的肝细胞前体细胞只能增殖1个月。来自婴儿肝脏的细胞可以获得无限的增殖能力,反映了新生儿肝细胞的高度增殖特性。然而,在培养2周后,他们失去了产生完全功能的肝细胞的能力,这种能力被称为分化能力。为了成功地将人类肝细胞重新编程为正确的祖细胞状态,我们将使用称为基因工程的技术。通过这项技术,我们将向人类祖细胞提供多个候选基因,这些基因与完全功能的大鼠祖细胞相比,在部分重新编程的非功能性人类祖细胞中缺失。这将导致完全重新编程的人肝细胞前体细胞具有无限的增殖和高效的分化能力,并以基因修饰依赖的方式。同时,我们将寻找环境线索,在没有基因操纵的情况下帮助维持重新编程的状态。这将通过使用称为CRISPR/Cas9基因组编辑的最先进技术在数百万个细胞中同时消除基因组中所有约20,000个基因中的每一个来实现。这一策略将告诉我们哪些环境线索是维持重新编程的人类肝细胞前体细胞所必需的,使我们能够在培养条件下补充这些必要的成分(蛋白质/化学物质),而不是遗传修饰。综上所述,该项目旨在开发一种策略,以产生全功能的人类肝脏前体细胞,在没有遗传修饰的情况下,将成为全功能成熟肝细胞的无限来源,用于药物筛选、毒理学测试以及细胞治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keisuke Kaji其他文献

The Effect of Mastication on Reaction Latency to UnanticipatedExternal Disturbances in the Standing Position
站立时咀嚼对意外外部干扰反应潜伏期的影响
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keisuke Kaji;Munenori Katoh;Koji Isozaki;Junya Aizawa;Tadashi Masuda;Sadao Morita
  • 通讯作者:
    Sadao Morita
ASBMR 2011 REPORT 基礎研究トピックス
ASBMR 2011报告基础研究主题
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    武輪能明;中山泰秀;山並将志;花田 繁;梅木昭秀;松井悠一;神田圭一;夜久 均;田地川 勉;大場謙吉;妙中義之;巽 英介;Keisuke Kaji;今井祐記
  • 通讯作者:
    今井祐記
Small angle neutron scattering studies of the structure of nucleosome cores at low ionic strength
低离子强度下核小体核心结构的小角中子散射研究
  • DOI:
  • 发表时间:
    1983
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kazuei Mita;M. Zama;Sachiko Ichimura;Nobuo Niimura;Nobuo Niimura;Keisuke Kaji;Keisuke Kaji;Mitsuhiro Hirai;Mitsuhiro Hirai;Yoshikazu Ishikawa;Yoshikazu Ishikawa
  • 通讯作者:
    Yoshikazu Ishikawa
17-P022 Virus-free induction of pluripotency and subsequentexcision of reprogramming factors
  • DOI:
    10.1016/j.mod.2009.06.743
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Keisuke Kaji;Katherine Norrby;Agnieszka Paca;Maria Mileikovsky;Paria Mohseni;Knut Woltjen
  • 通讯作者:
    Knut Woltjen
Enhancement of CNN-based Probability Modeling by Locally Trained Adaptive Prediction for Efficient Lossless Image Coding
通过本地训练的自适应预测增强基于 CNN 的概率建模,实现高效无损图像编码
  • DOI:
    10.1109/pcs56426.2022.10018003
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keisuke Kaji;Y. Kita;I. Matsuda;S. Itoh;Yusuke Kameda
  • 通讯作者:
    Yusuke Kameda

Keisuke Kaji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keisuke Kaji', 18)}}的其他基金

Validating an in vivo b-Catenin DamID-seq system and illuminating b-Catenin targets in steatosis and hepatocellular carcinoma
验证体内 b-Catenin DamID-seq 系统并阐明脂肪变性和肝细胞癌中的 b-Catenin 靶点
  • 批准号:
    MR/X000877/1
  • 财政年份:
    2023
  • 资助金额:
    $ 78.71万
  • 项目类别:
    Research Grant
Genome-wide exploration of reprogramming mechanisms using CRISPR/Cas9 and DamID technologies
使用 CRISPR/Cas9 和 DamID 技术对重编程机制进行全基因组探索
  • 批准号:
    MR/N008715/1
  • 财政年份:
    2016
  • 资助金额:
    $ 78.71万
  • 项目类别:
    Fellowship
Illuminating molecular mechanisms required for efficient reprogramming and transdiffrentiation
阐明有效重编程和转分化所需的分子机制
  • 批准号:
    BB/L023474/1
  • 财政年份:
    2014
  • 资助金额:
    $ 78.71万
  • 项目类别:
    Research Grant
Investigation into the mechanisms of mesendoderm specification during ES cell differentiation
ES细胞分化过程中中内胚层规范机制的研究
  • 批准号:
    G0700672/1
  • 财政年份:
    2007
  • 资助金额:
    $ 78.71万
  • 项目类别:
    Fellowship

相似国自然基金

儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
  • 批准号:
    32371121
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
涡虫成体干细胞SirNeoblasts中多功能干细胞的鉴定和培养
  • 批准号:
    31970750
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
选择性剪切调控Nf1缺失小鼠成体神经干细胞分化潜能的机制研究
  • 批准号:
    31871376
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
小分子诱导成熟肝细胞转化为CD24+肝前体样细胞的机制和应用研究
  • 批准号:
    31872823
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
乙酰化转移酶KAT2A对骨骼肌干细胞分化的调节作用及机理研究
  • 批准号:
    31871370
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
线粒体钙离子信号对果蝇肠道干细胞的增殖调控
  • 批准号:
    31871371
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
造血微环境中骨相关Sca1+细胞的发育及功能研究
  • 批准号:
    31801146
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
CTPS细胞蛇组装对C2C12细胞分化的影响及作用机制
  • 批准号:
    31801148
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
蛋白精氨酸N端甲基化转移酶5(PRMT5)促进乳腺细胞干性的功能和机制研究
  • 批准号:
    31771516
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
染色质重塑因子Snf5在肝干细胞谱系重编程中的作用及机制
  • 批准号:
    31771511
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
  • 批准号:
    10595404
  • 财政年份:
    2023
  • 资助金额:
    $ 78.71万
  • 项目类别:
Partial epigenetic reprogramming of retinal pigment cells in age-related degeneration, dysfunction, and injury
视网膜色素细胞在年龄相关变性、功能障碍和损伤中的部分表观遗传重编程
  • 批准号:
    10644270
  • 财政年份:
    2023
  • 资助金额:
    $ 78.71万
  • 项目类别:
Impact of Maternal Arsenic Exposure on Offspring's Epigenetic Reprogramming of Allergic Airway Disease
母亲砷暴露对后代过敏性气道疾病表观遗传重编程的影响
  • 批准号:
    10733607
  • 财政年份:
    2023
  • 资助金额:
    $ 78.71万
  • 项目类别:
Lymphatic Regeneration by Direct Cellular Reprogramming
通过直接细胞重编程实现淋巴再生
  • 批准号:
    10744935
  • 财政年份:
    2023
  • 资助金额:
    $ 78.71万
  • 项目类别:
Metabolic Reprogramming of the Adult heart to a Regenerative State
成人心脏代谢重编程至再生状态
  • 批准号:
    10562415
  • 财政年份:
    2023
  • 资助金额:
    $ 78.71万
  • 项目类别:
Early Life Stress Induced Reprogramming of Vascular Function by the Endothelium and Macrophage Systems
生命早期的压力诱导内皮细胞和巨噬细胞系统对血管功能进行重新编程
  • 批准号:
    10555125
  • 财政年份:
    2023
  • 资助金额:
    $ 78.71万
  • 项目类别:
Reprogramming myogenic regulatory factors in RMS to promote differentiation and halt growth
重新编程 RMS 中的生肌调节因子以促进分化并阻止生长
  • 批准号:
    10682281
  • 财政年份:
    2023
  • 资助金额:
    $ 78.71万
  • 项目类别:
Early Life Stress-induced Reprogramming of Ambulatory Blood Pressure and Vascular Function in Adolescence
生命早期压力引起的青春期动态血压和血管功能的重编程
  • 批准号:
    10555127
  • 财政年份:
    2023
  • 资助金额:
    $ 78.71万
  • 项目类别:
Molecular characterization of metabolic reprogramming in anorexia nervosa
神经性厌食症代谢重编程的分子特征
  • 批准号:
    10449529
  • 财政年份:
    2022
  • 资助金额:
    $ 78.71万
  • 项目类别:
Metabolic Reprogramming and Regeneration in the Aged Epidermis
老化表皮的代谢重编程和再生
  • 批准号:
    10707385
  • 财政年份:
    2022
  • 资助金额:
    $ 78.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了