MICA - Developing novel single-cell multiplexing methods to identify drug targets for the treatment of multiple myeloma

MICA - 开发新型单细胞多重方法来确定治疗多发性骨髓瘤的药物靶点

基本信息

  • 批准号:
    MR/V010182/1
  • 负责人:
  • 金额:
    $ 158.96万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Multiple Myeloma is a bone marrow cancer that affects over 5,700 new patients a year in the UK. Current response rates to treatment are varied and there is a mean survival age of only 4-5 years, with a 10-year survival rate of only ~3%. A significant proportion of treatment failure is due to the emergence of multi-drug resistance, which arise because of changes (mutations) in the nucleotides that form the building blocks of our DNA. RNA is a type of DNA and mostly acts as a messenger to carry out the instructions of DNA. Epigenetics is the addition of information on top of the DNA sequence that can modify the behaviour of a cell. This is achieved by adding a variety of chemical modifications or "marks" to the nucleotides.Historically, scientists have investigated complex disease biology by mashing up pieces of tissue and taking biological measurements to work out the causes of disease. This is akin to blending fruit into a smoothie and then giving it to someone else to work out the ingredients by looking through the glass. Some fruit may be easy to identify, while others may be impossible to recognise. More recently, scientists have developed technologies that have allowed us to reconstruct the smoothie more easily by looking at its individual parts in finer detail. These "single-cell" technologies allow us to look at the components of the tissue one cell at a time and permit us to work out what may be causing disease. With this information we can design better drugs that target disease. In this fellowship, I will develop novel single-cell technology that are capable of capturing many more biological readouts than previously possible with currently technologies. This technology will then be applied to understand DNA, RNA and epigenetic mechanisms that contribute to the development of a bone cancer called Multiple Myeloma (MM). In partnership with a biotechnology company, I have developed such a technology within in my lab that is capable of measuring RNA and DNA simultaneously from the same single cell. The first aim of this fellowship will be to extend the utility of this technology so that I can increase the different types of measurements that are possible. For example, I will develop a method that makes it possible to measure both RNA and the epigenetic marks on the DNA. Next, I will use this technology to investigate MM disease. Specifically, I will ask the following questions: 1) why do patients develop MM? and 2) why do patients develop resistance to current clinical therapies? Ultimately, the main goal of my research is to better understand MM disease biology so we can develop new medicines to treat this incurable disease.In order to work out why drug resistance occurs we need to make sense of the patterns of data that are generated using our single-cell technologies. Given the large amount of data generated during this project, I will use my skills as a software developer to generate computer code that will automate this process. Ultimately, outputs from this code will allow me to generate a map of disease that I can then use to identify drug targets for treating MM patients. Why does this project have a greater chance of success? Very few methods have been developed that can look at more than one biological measurement simultaneously. The assays that I will develop during this fellowship, which are based on our unique single-cell technology, will provide and unparalleled understanding of the complex mechanisms that contribute to the development of MM and drug resistance. This timely technology will allow me to identify novel drug targets for MM, which will then be followed up in pre-clinical models within the Oxford Centre for Multiple Myeloma Research and ultimately translated towards the clinic.
多发性骨髓瘤是一种骨髓癌,在英国每年影响超过5,700名新患者。目前对治疗的反应率各不相同,平均生存年龄仅为4-5年,10年生存率仅为~ 3%。很大一部分治疗失败是由于多药耐药性的出现,这是由于构成我们DNA结构单元的核苷酸发生变化(突变)而引起的。RNA是DNA的一种,主要作为信使执行DNA的指令。表观遗传学是在DNA序列上添加信息,可以改变细胞的行为。这是通过在核苷酸上添加各种化学修饰或“标记”来实现的。历史上,科学家们通过捣碎组织碎片并进行生物测量来研究复杂的疾病生物学,以找出疾病的原因。这类似于将水果混合到冰沙中,然后将其交给其他人通过观察玻璃来确定成分。有些水果可能很容易识别,而另一些则可能无法识别。最近,科学家们开发了一种技术,使我们能够更容易地通过更精细的细节来重建思慕雪。这些“单细胞”技术使我们能够一次一个细胞地观察组织的组成部分,并使我们能够找出可能导致疾病的原因。有了这些信息,我们可以设计出更好的针对疾病的药物。在这个奖学金,我将开发新的单细胞技术,能够捕获更多的生物读数比以前可能与目前的技术。然后,这项技术将被应用于了解DNA,RNA和表观遗传机制,这些机制有助于发展称为多发性骨髓瘤(MM)的骨癌。在与一家生物技术公司的合作中,我在实验室开发了这样一种技术,能够同时测量来自同一个细胞的RNA和DNA。这个奖学金的第一个目标是扩展这项技术的实用性,这样我就可以增加可能的不同类型的测量。例如,我将开发一种方法,可以测量RNA和DNA上的表观遗传标记。接下来,我将使用这项技术来研究MM疾病。具体来说,我会问以下问题:1)为什么患者会患MM?以及2)为什么患者会对当前的临床治疗产生耐药性?最终,我研究的主要目标是更好地了解MM疾病的生物学,以便我们能够开发新的药物来治疗这种不治之症。为了弄清楚为什么会出现耐药性,我们需要理解使用我们的单细胞技术产生的数据模式。由于在这个项目中产生了大量的数据,我将利用我作为软件开发人员的技能来生成计算机代码,使这个过程自动化。最终,这些代码的输出将允许我生成一个疾病地图,然后我可以使用它来确定治疗MM患者的药物靶点。为什么这个项目有更大的成功机会?很少有方法可以同时查看一个以上的生物测量。我将在此研究期间开发的基于我们独特的单细胞技术的检测方法,将提供对MM和耐药性发展的复杂机制的无与伦比的理解。这项及时的技术将使我能够确定MM的新药物靶点,然后将在牛津多发性骨髓瘤研究中心的临床前模型中进行随访,并最终转化为临床。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A blood atlas of COVID-19 defines hallmarks of disease severity and specificity.
  • DOI:
    10.1016/j.cell.2022.01.012
  • 发表时间:
    2022-03-03
  • 期刊:
  • 影响因子:
    64.5
  • 作者:
    COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium. Electronic address: julian.knight@well.ox.ac.uk;COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium
  • 通讯作者:
    COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium
Electrospun Scaffold Micro-Architecture Induces an Activated Transcriptional Phenotype within Tendon Fibroblasts.
  • DOI:
    10.3389/fbioe.2021.795748
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Baldwin MJ;Mimpen JY;Cribbs AP;Stace E;Philpott M;Dakin SG;Carr AJ;Snelling SJ
  • 通讯作者:
    Snelling SJ
Dissecting the Role of BET Bromodomain Proteins BRD2 and BRD4 in Human NK Cell Function.
  • DOI:
    10.3389/fimmu.2021.626255
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Cribbs AP;Filippakopoulos P;Philpott M;Wells G;Penn H;Oerum H;Valge-Archer V;Feldmann M;Oppermann U
  • 通讯作者:
    Oppermann U
Phenotypic Chemical Screening in CD4+ T Cells to Identify Epigenetic Inhibitors.
CD4 T 细胞表型化学筛选以鉴定表观遗传抑制剂。
A cross-sectional analysis of syncytiotrophoblast membrane extracellular vesicles-derived transcriptomic biomarkers in early-onset preeclampsia.
  • DOI:
    10.3389/fcvm.2023.1291642
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Awoyemi, Toluwalase;Zhang, Wei;Rahbar, Maryam;Cribbs, Adam;Logenthiran, Prasanna;Jiang, Shuhan;Collett, Gavin;Cerdeira, Ana Sofia;Vatish, Manu
  • 通讯作者:
    Vatish, Manu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Cribbs其他文献

Identification of Novel Syncytiotrophoblast Membrane Extracellular Vesicles Derived Protein Biomarkers in Preeclampsia: A Cross-Sectional Study
先兆子痫中新型合体滋养层膜细胞外囊泡衍生蛋白生物标志物的鉴定:横断面研究
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Toluwalase Awoyemi DPhil;Shuhan Jiang;Bríet Bjarkadóttir DPhil;P. Logenthiran;Mbbs;Gavin Collett;Wei Zhang;Adam Cribbs;A. Cerdeira;Manu Vatish DPhil;Dr Manu Vatish
  • 通讯作者:
    Dr Manu Vatish
P-065: Development of a mass cytometry-based toolkit to investigate myeloma therapeutic responses ex vivo
  • DOI:
    10.1016/s2152-2650(22)00395-0
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sarah Gooding;Manman Guo;Oliver Van Oekelen;Kinda Al-Hourani;Edmund Watson;Charlotte Palmer;Martin Philpott;Warren Baker;David Ahern;Bhaskar Updahyaya;Seunghee Kim-Schulze;Erin Flynt;William Pierceall;Karthik Ramasamy;Adam Cribbs;Samir Parekh;Anjan Thakurta;Udo Oppermann
  • 通讯作者:
    Udo Oppermann
P-093: Iberdomide induces activation and proliferation of innate and adaptive immune cell subsets in the tumor microenvironment of relapsed/refractory myeloma patients
  • DOI:
    10.1016/s2152-2650(22)00423-2
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Oliver Van Oekelen;Michael Amatangelo;Manman Guo;Bhaskar Updahyaya;Adam Cribbs;Geoffrey Kelly;Manishkumar Patel;Seunghee Kim-Schulze;Erin Flynt;Alessandro Lagana;Sarah Gooding;Sundar Jagannath;William Pierceall;Anjan Thakurta;Udo Oppermann;Samir Parekh
  • 通讯作者:
    Samir Parekh
P-360 Exploring the role of the polycomb repressive complex 2 in high-risk multiple myeloma
  • DOI:
    10.1016/s2152-2650(23)01978-x
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Charlotte Palmer;Chih-Chao Hsu;Chad Bjorklund;Nicholas Stong;Adam Cribbs;Anjan Thakurta;Aparna Raval;Anita Gandhi;Patrick Hagner;Udo Oppermann
  • 通讯作者:
    Udo Oppermann

Adam Cribbs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Towards sustainable cultured meat production by developing a novel biocatalyst
通过开发新型生物催化剂实现可持续的培养肉生产
  • 批准号:
    BB/Y007859/1
  • 财政年份:
    2024
  • 资助金额:
    $ 158.96万
  • 项目类别:
    Research Grant
Developing a new generation of tools for predicting novel AMR mutation profiles using generative AI
使用生成人工智能开发新一代工具来预测新型 AMR 突变谱
  • 批准号:
    BB/Z514305/1
  • 财政年份:
    2024
  • 资助金额:
    $ 158.96万
  • 项目类别:
    Research Grant
Developing and testing a novel self-guided digital therapeutic solution for preventing stammering in children: incorporating latest research on early detection and progress evaluation using real-world data
开发和测试一种新颖的自我引导数字治疗解决方案,用于预防儿童口吃:结合使用真实世界数据进行早期检测和进展评估的最新研究
  • 批准号:
    10072187
  • 财政年份:
    2023
  • 资助金额:
    $ 158.96万
  • 项目类别:
    Collaborative R&D
Cicero - Developing chickpea as a novel source of domestic UK protein
西塞罗 - 将鹰嘴豆开发为英国国内蛋白质的新来源
  • 批准号:
    10052996
  • 财政年份:
    2023
  • 资助金额:
    $ 158.96万
  • 项目类别:
    Collaborative R&D
HoloMem: Developing a novel holographic data storage technology to address the growing need within global data storage
HoloMem:开发一种新颖的全息数据存储技术,以满足全球数据存储日益增长的需求
  • 批准号:
    10049468
  • 财政年份:
    2023
  • 资助金额:
    $ 158.96万
  • 项目类别:
    Collaborative R&D
Developing a novel Climate change Risk Assessment Framework for cultural heritage in Turkey (CRAFT)- Phase II
为土耳其文化遗产制定新颖的气候变化风险评估框架(CRAFT)-第二阶段
  • 批准号:
    AH/X006816/1
  • 财政年份:
    2023
  • 资助金额:
    $ 158.96万
  • 项目类别:
    Research Grant
Developing novel, potent, and brain permeable inhibitors of inosine monophosphate dehydrogenase to prevent brain metastases
开发新型、有效且脑可渗透的肌苷单磷酸脱氢酶抑制剂以预防脑转移
  • 批准号:
    496426
  • 财政年份:
    2023
  • 资助金额:
    $ 158.96万
  • 项目类别:
    Fellowship Programs
DEVELOPING A HUMAN STEM CELL-DERIVED HEART MODEL TO CHARACTERIZE A NOVEL ARRHYTHMIA SYNDROME
开发人类干细胞衍生的心脏模型来表征新型心律失常综合征
  • 批准号:
    495592
  • 财政年份:
    2023
  • 资助金额:
    $ 158.96万
  • 项目类别:
Developing and Evaluating a Positive Valence Treatment for Alcohol Use Disorder with Anxiety or Depression
开发和评估治疗伴有焦虑或抑郁的酒精使用障碍的正价疗法
  • 批准号:
    10596013
  • 财政年份:
    2023
  • 资助金额:
    $ 158.96万
  • 项目类别:
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
  • 批准号:
    10596047
  • 财政年份:
    2023
  • 资助金额:
    $ 158.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了