The Electrical Machine Works: Exploring Metal Additive Manufacturing for Next Generation High Performance Electrical Machines and Wound Components

电机的工作原理:探索下一代高性能电机和绕线组件的金属增材制造

基本信息

  • 批准号:
    MR/V024906/1
  • 负责人:
  • 金额:
    $ 142.98万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Step changes in electrical machine (e-machine) performance are central to the success of future More-Electric and All-Electric transport initiatives and play a vital role in meeting the UK's Net Zero Emission target by 2050. E-machine technology roadmaps from the Advanced Propulsion Centre (APC) and Aerospace Technology Institute (ATI) seek continuous power-density of between 9 and 25 kW/kg by 2035, in stark contrast to the 2-5 kW/kg available today. E-machine power-density is ultimately limited by the ability to dissipate internally generated losses, which manifest as heat, and the temperature rating of the electrical insulation system. The electrical conductors, referred to as windings, are often the dominant loss source and are conventionally formed from electrically insulated copper or aluminium conductors. Such conductors are manufactured using a drawing and insulation technique, which aside from improvements in materials, has seen little change in the past century. Exploring alternative manufacturing methods could allow reduction in losses, enhanced heat extraction and facilitate increased temperature ratings, ushering the necessary step changes in power-density and e-machine performance. Metal Additive Manufacturing (AM) is a process in which material is selectively bonded layer by layer to ultimately form a 3D part, enabling complex parts to be produced which may not be feasible using conventional methods. The design freedom offered by AM provides much sought-after opportunities to simultaneously reduce winding losses and packaging volume, improve thermal management and enable the use of high-temperature electrical insulation coatings.The design of such windings requires the development of new multi-physics design tools accounting for electromagnetic, thermo- and fluid- dynamics, mechanical and Design for AM (DfAM) aspects. It is important to have an understanding of the AM process, including the resulting material properties of parts and limitations on feature sizes and geometry in order to fully exploit the design freedoms whilst ensuring manufacturing feasibility. Establishing how to use build-supports and post-processes to improve component surface quality and facilitate application of electrical insulation coatings is another important aspect. To this end, I conducted initial studies in collaboration with academic and industrial partners focusing on shaped profile windings which have demonstrated the potential benefits of metal AM in e-machines and the drastic expansion of design possibilities to be explored. I intend to expand on this initial work through this fellowship which will provide me with flexible funding over a 4 + 3 year term to support The Electrical Machine Works, an ambitious and comprehensive research programme reminiscent of a Skunk Works project which draws together UK industry and academic expertise in AM, material science and multi-physics e-machine design to establish an internationally leading platform in this important emerging field. It is envisaged that the fellowship and associated platform, The Electrical Machine Works, will facilitate interdisciplinary collaboration with both industry and academia, catalysing high quality academic outputs disseminated through appropriate conference and journal publications, and the generation of Intellectual Property (IP), helping to keep the UK competitive in Power Electronics Machines and Drives (PEMD) and at the forefront of this area. If successful, in time The Electrical Machine Works will become a centre of excellence for AM in e-machines, contributing to a future skills and people pipeline and aiding in the raising of Technology Readiness Levels (TRL) in line with national priorities as expressed by the UK's Industrial Strategy, Advanced Propulsion Centre (APC), Aerospace Technology Institute (ATI) and Industrial Strategy Challenge Fund (ISCF) Driving the Electric Revolution (DER) and Future Flight (FF) initiatives.
电机 (e-machine) 性能的逐步变化对于未来多电动和全电动交通计划的成功至关重要,并且对于实现英国到 2050 年的净零排放目标发挥着至关重要的作用。先进推进中心 (APC) 和航空航天技术研究所 (ATI) 的电机技术路线图寻求到 2035 年将连续功率密度提高到 9 至 25 kW/kg,这与 2-5 千瓦/千克的连续功率密度形成鲜明对比。 千瓦/公斤现已上市。电机功率密度最终受到消散内部产生的损耗(表现为热量)的能力以及电气绝缘系统的温度额定值的限制。被称为绕组的电导体通常是主要的损耗源并且通常由电绝缘的铜或铝导体形成。这种导体是采用拉拔和绝缘技术制造的,除了材料的改进之外,在过去的一个世纪中几乎没有什么变化。探索替代制造方法可以减少损耗、增强散热并促进提高温度额定值,从而在功率密度和电机性能方面带来必要的阶跃变化。金属增材制造 (AM) 是一种将材料选择性地逐层粘合以最终形成 3D 零件的工艺,从而能够生产使用传统方法可能无法生产的复杂零件。增材制造提供的设计自由度为同时减少绕组损耗和封装体积、改善热管理以及使用高温电绝缘涂层提供了许多抢手的机会。此类绕组的设计需要开发新的多物理场设计工具,涵盖电磁、热和流体动力学、机械和增材制造设计 (DfAM) 方面。了解增材制造工艺非常重要,包括零件的最终材料特性以及特征尺寸和几何形状的限制,以便充分利用设计自由度,同时确保制造可行性。另一个重要方面是确定如何使用构建支撑和后处理来提高部件表面质量并促进电气绝缘涂层的应用。为此,我与学术和工业合作伙伴合作进行了初步研究,重点关注异形绕组,这些研究证明了金属增材制造在电机中的潜在优势以及有待探索的设计可能性的大幅扩展。我打算通过这项奖学金扩展这项初步工作,该奖学金将为我提供为期 4 + 3 年的灵活资金,以支持 The Electrical Machine Works,这是一个雄心勃勃且全面的研究项目,让人想起 Skunk Works 项目,该项目汇集了英国在增材制造、材料科学和多物理电机设计方面的行业和学术专业知识,在这个重要的新兴领域建立了一个国际领先的平台。据设想,该奖学金和相关平台“电机工程”将促进与工业界和学术界的跨学科合作,促进通过适当的会议和期刊出版物传播高质量的学术成果,并产生知识产权(IP),帮助英国保持在电力电子机器和驱动(PEMD)领域的竞争力并处于该领域的前沿。如果成功的话,The Electrical Machine Works 将及时成为电动机器增材制造的卓越中心,为未来的技能和人才输送做出贡献,并根据英国工业战略、先进推进中心 (APC)、航空航天技术研究所 (ATI) 和工业战略挑战基金 (ISCF) 推动电动革命 (DER) 和未来飞行 (FF) 倡议所表达的国家优先事项,帮助提高技术准备水平 (TRL)。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct Thermal Management of Windings Enabled by Additive Manufacturing
通过增材制造实现绕组的直接热管理
Experimental Investigation of a Slotless Skewed Stator with a Composite Winding Layer
复合绕组层无槽斜交定子的实验研究
  • DOI:
    10.1109/ecce47101.2021.9595395
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Collins S
  • 通讯作者:
    Collins S
Additive Manufacturing of a Conformal Hybrid-Strand Concentrated Winding Topology for Minimal AC Loss in Electrical Machines
共形混合股集中绕组拓扑的增材制造,可实现电机中最小交流损耗
  • DOI:
    10.1109/ecce47101.2021.9595059
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simpson N
  • 通讯作者:
    Simpson N
Computational efficient design framework for low AC loss, 3D printed windings
用于低交流损耗、3D 打印绕组的高效计算设计框架
  • DOI:
    10.1109/ecce53617.2023.10361951
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mellor P
  • 通讯作者:
    Mellor P
Functionally Graded Electrical Windings Enabled by Additive Manufacturing
通过增材制造实现功能分级电气绕组
  • DOI:
    10.1109/icem51905.2022.9910912
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simpson N
  • 通讯作者:
    Simpson N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nick Simpson其他文献

(2017). An accurate and flexible calorimeter topology for power electronic system loss measurement. In 2017 IEEE International Electric Machines and Drives
(2017)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nick Simpson;Andrew Hopkins
  • 通讯作者:
    Andrew Hopkins
Additive Manufacturing of Next Generation Electrical Machine Windings: Opportunities in Fusion Engineering?
下一代电机绕组的增材制造:融合工程的机遇?
  • DOI:
    10.1109/tps.2024.3359709
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    R. Wragge;Nick Simpson;Priya Munagala;Harry Felton
  • 通讯作者:
    Harry Felton
Electrothermal power cycling of 15 kV SiC PiN diodes
15 kV SiC PiN 二极管的电热功率循环
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheng;S. Jahdi;Sai Priya Munagala;Nick Simpson;P. Mellor;O. Alatise;J. González
  • 通讯作者:
    J. González
The Global Adaptation Mapping Initiative (GAMI): Part 1 – Introduction and overview of methods
全球适应绘图倡议 (GAMI):第 1 部分 – 方法介绍和概述
  • DOI:
    10.21203/rs.3.pex-1240/v1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Berrang‐Ford;A. Lesnikowski;A. P. Fischer;A. Siders;K. Mach;Adelle Thomas;M. Callaghan;Neal R Haddaway;R. Kerr;R. Biesbroek;K. Bowen;D. Deryng;Susan Elliott;J. Ford;M. Garschagen;E. Gilmore;S. Harper;Marjolijn Hassnoot;T. Lissner;S. Lwasa;A. Magnan;J. Minx;M. Morecroft;M. New;E. Perez;D. Reckien;Nick Simpson;C. Singh;L. Stringer;E. Totin;C. Trisos;M. V. Aalst
  • 通讯作者:
    M. V. Aalst
Measurement of the thermal characteristics of a stator-housing interface
定子-外壳界面热特性的测量

Nick Simpson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nick Simpson', 18)}}的其他基金

Additive Manufacturing of High Performance Shaped-Profile Electrical Machine Windings
高性能异形电机绕组的增材制造
  • 批准号:
    EP/T02125X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 142.98万
  • 项目类别:
    Research Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
  • 批准号:
    MR/Y033884/1
  • 财政年份:
    2025
  • 资助金额:
    $ 142.98万
  • 项目类别:
    Fellowship
Human-Machine-Interaction Laboratory
人机交互实验室
  • 批准号:
    528773253
  • 财政年份:
    2024
  • 资助金额:
    $ 142.98万
  • 项目类别:
    Major Research Instrumentation
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 142.98万
  • 项目类别:
    Collaborative R&D
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
  • 批准号:
    10073285
  • 财政年份:
    2024
  • 资助金额:
    $ 142.98万
  • 项目类别:
    Feasibility Studies
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
  • 批准号:
    10091423
  • 财政年份:
    2024
  • 资助金额:
    $ 142.98万
  • 项目类别:
    Collaborative R&D
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
  • 批准号:
    LP230100439
  • 财政年份:
    2024
  • 资助金额:
    $ 142.98万
  • 项目类别:
    Linkage Projects
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
  • 批准号:
    DP240100506
  • 财政年份:
    2024
  • 资助金额:
    $ 142.98万
  • 项目类别:
    Discovery Projects
Attribution of Machine-generated Code for Accountability
机器生成代码的责任归属
  • 批准号:
    DP240102164
  • 财政年份:
    2024
  • 资助金额:
    $ 142.98万
  • 项目类别:
    Discovery Projects
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 142.98万
  • 项目类别:
    Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
  • 批准号:
    EP/X033244/1
  • 财政年份:
    2024
  • 资助金额:
    $ 142.98万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了